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Abstract  
 
The addition of force feedback to virtual 

environments and teleoperators provides many 
benefits to the user.  However, the mechanisms by 
which force feedback improves performance remain 
unknown.  We present an experiment demonstrating 
that force feedback can provide a physical constraint 
to an operator’s motion, passively restraining the hand 
and reducing error even before the operator can 
voluntarily respond to the force stimulus. Because of 
the presence of force feedback, the magnitude of 
unwanted incursions into a virtual wall were reduced 
by up to 80%, as compared to the case with no force 
feedback.  We also propose that a second order 
mechanical model of the operator’s hand can be used 
to quantify the benefits of force feedback.  Using our 
model, we are able to account on average for over 
95% of the variance in the force on the hand. 
 
1. Introduction 

 
The benefits of force feedback have been 

demonstrated in numerous environments and systems.  
Teleoperated tasks such as hazardous material 
handling and remote surgery have both shown an 
increase in performance with the addition of force 
feedback [1, 2].  Force feedback in a teleoperated blunt 
surgical dissection task has been shown to reduce 
forces applied by the instrument and to reduce 
unwanted motions that exceed a force threshold [3].   
Virtual environments have also benefited when the 
user is presented with force information [4].  Force 
information may also serve to establish a more 
powerful feeling of presence in a remote environment 
[5]. However, the mechanisms by which force 
feedback improves performance have not been fully 
investigated.  Knowledge of these mechanisms would 
allow optimal interface design and highlight tasks 
where force feedback would be most beneficial. 

A common approach to analysis of force feedback 
is to create a model of the interacting limb or the 
interface mechanism.  Finger and wrist impedance 
models have been developed to examine keyboard 
design [6] and haptic controller design [7] [8].  Limb 

impedances have also been found to change over time 
due to leaning effects and perceived task difficulty [9].   
These impedance models, however, were derived at a 
fixed limb position and do not take into account the 
desired motion that is present when executing a task.  
Models of interface mechanisms have also been 
developed for use in conjunction with limb impedance 
to determine the optimal way to transmit forces.  For 
example, models for bilateral telemanipulators are used 
to analyze stability while also minimizing the 
difference between remote and local forces [10].  
Again, these models do not provide insight into the 
mechanisms by which forces improve performance.  
Some research has been presented on combining a 
teleoperator model and a hand impedance model to 
examine how forces help in teleoperation [11]; Daniel 
and McAree concluded that forces below 30 Hz act to 
transfer energy and forces above 30 Hz act as an 
information source.  While these results are an 
important foundation, they do not relate the effects of 
force feedback to task characteristics and performance 
metrics.    

We propose that a model of the operator’s hand and 
the haptic interface mechanism combined with 
knowledge of the operator’s desired motions can lead 
to insight into how force feedback improves operator 
performance.  Our primary hypothesis is that force 
feedback exists as a physical constraint, passively 
restricting the motion of the operator.  Secondly, we 
conjecture that a model of hand impedance can be used 
to derive the operator’s desired motion trajectory in a 
task, allowing us to separate the passive benefit of 
force feedback that acts as a constraint from the 
informational benefit of force feedback that leads to 
voluntary motion changes.  We present an experiment 
where users interact with a stylus attached to a robotic 
interface.  Users move the stylus at a constant speed 
until encountering a tactile stimulus, either a vibration 
or a force resisting the direction of motion.  Based 
upon their reaction time, we demonstrate that the force 
stimulus passively restricts the users motion before 
they can voluntarily react.  Further, we show that a 
second order model of the hand/stylus system can be 
used to quantify the constraint and informational 
contributions of force feedback. 



2. Methods And Materials 
 
In this experiment, subjects execute a motion, and 

then reverse their motion upon feeling a haptic 
stimulus.  In the 150 ms before the users can 
voluntarily respond to the stimulus [12], they will 
continue in the direction of the original motion.  
During this pre-voluntary time, when force feedback 
that resists the direction of motion is present, the hand 
will not travel as far as compared to the case where the 
stimulus is a vibration that provides no net force to the 
user. Because subjects cannot voluntarily respond 
during the pre-voluntary phase, we can also model the 
motion of the hand during that time using passive 
mechanical components.  This model can be used to 
analyze the magnitude of the physical constraint and 
determine the user’s voluntary motion after responding 
to the stimulus. 

 

Fig. 1.  Stylus grasp configuration 

  a. b. 

Fig. 2.  (a) Diagram of workspace showing 
user motion. (b) Diagram of cursor with speed 
rectangles displaying a current speed above 
the desired speed target. 

2.1. Experimental Design 
 
A haptic interface device (Phantom 1.5, Sensable, 

Woburn, MA) was used to record the participant’s 
trajectory data as well as provide haptic stimuli during 

the experiment [13].  We define the positive x direction 
to be to the right and positive y to be upward with 
respect to the user.  Subjects grasped the stylus like a 
pen to control the motion of the tip of the stylus in the 
x, y plane (Fig. 1). A one-dimensional accelerometer 
(PiezoBeam 8630B50, Kistler, Amherst, NY) with a 
resolution of 0.005 m/s2 was rigidly attached to the 
stylus gimbal to record accelerations in the y-
dimension. Position and acceleration data were 
recorded at 1000 Hz for each trial. 

Subjects were instructed to move the tip of an 
interface stylus upward (positive y direction) in a 
straight-line trajectory at a constant speed until 
encountering a ‘wall.’  The wall would be signified by 
the presence of either a force resisting the motion of 
the stylus or a vibration.  Note that the only 
information on wall position presented to the user was 
through the haptic pathways. After contacting the wall, 
subjects were instructed to reverse their direction of 
motion as soon as possible and exit the wall.   

A computer monitor provided feedback of the 
participant’s current position in the x,y plane and 
velocity in the positive y direction.  The position of the 
tip of the interface stylus was mapped to the position 
of a cursor with a scale factor of 1 (Figure 2a).  A one 
to one mapping between stylus tip and cursor (i.e. a 
1 cm motion of the stylus tip would move the cursor 
1 cm on the screen) was used to remove any scaling 
effects.  Velocity in the positive y-dimension was 
displayed using rectangles on either side of the cursor 
(Figure 2b). The height of the rectangles increased 
with increasing vertical speed, up to a maximum 
height. The desired constant velocity that participants 
were asked to move at corresponded to half of the 
maximum rectangle height. The workspace of the 
experiment in the x, y plane was 16 cm by 12 cm. 

The path that the subject was asked to follow 
always began at the bottom center of the workspace. 
The wall stimulus would appear when the subject 
maintained a speed +/- 5% of the target speed of 
40 mm/s for 100 ms. These numbers were determined 
through pilot studies to allow a reasonable success rate 
yet still restrict the participant’s initial velocity to a 
narrow range.  If the participant did not meet the speed 
criterion within the workspace, the trial was repeated.  
Subjects were given a training period where they 
practiced moving the stylus at a constant speed.  All 
subjects were able to trigger the wall stimulus 
regularly (on average, one out of three attempts) within 
five minutes of training. 

The motion of the participant’s forearm was 
restricted through the use of a brace rigidly attached to 
the armrest of the participant’s chair.  The brace was 
used so that the wrist was the principal joint used to 
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move the stylus. To avoid any audio stimulus, 
particularly during the vibration trials, participants 
wore headphones playing noise in the frequency of the 
vibration. 

 
2.2. Stimuli 

 
Two types of stimuli were used in the experiment to 

represent a wall.  The first type was a force vibration 
along the x dimension at 250 Hz with commanded 
amplitude of +/-1.0 N.  The vibration frequency was 
chosen to maximally stimulate the rapidly adapting 
receptors in the fingertip.  This stimulus was simply on 
or off depending on whether the subject was above or 
below the boundary of the wall. The second type of 
stimulus was a force in the negative y direction 
proportional to the distance traveled into the wall.  
This force is effectively a spring force with stiffness 
kwall.  Three force feedback gains of 33%, 67%, and 
100% were used to scale the spring force during the 
experiment.  Since the spring force was the only force 
encountered, the three levels of force feedback gains 
were equivalent to three different wall spring 
stiffnesses. The wall force can thus be expressed as 

 
 )( wallcursorwallFFwall yykGF −−=  (1) 

 
where ywall is the y position of the start of the compliant 
wall, GFF is the force feedback gain, kwall is the wall 
stiffness, and ycursor is the y position of the cursor.  A 
wall stiffness of kwall = 0.54 N/m was used in the 
experiment to give a perceptually relevant range of 
wall compliances.  

The subject’s motion was restricted to x ,y plane to 
simplify the workspace of the experiment to two 
dimensions and maintain the orientation of the 
accelerometer.  A spring model (proportional error) 
was again used to generate the forces necessary to 
restrict motion in the z dimension  

 
 )( cursorzz zkF −= , (2) 
 
with kz = 0.54 N. 

 
2.3. Hand model 

 
A linear, second order system was used to model 

the impedance of the hand/stylus system.  The model 
consists of a spring, mass, and damper as the link 
between a desired position input and an actual position 
output (Figure 3).  This type of model was chosen due 
to its success in characterizing limb impedances [7] 
[14] and as an attempt to find a low order model that 

still encapsulates physical features relevant to force 
feedback.  The model is also similar to one earlier 
proposed by Kuchenbecker et al. [8] who modeled the 
impedance of the wrist in a similar stylus grasp 
configuration. While the hand stylus system does not 
behave as a linear second order system over all ranges 
of input, a second order model has been shown to 
encapsulate the essential dynamics for the small 
excursions used here.  

Writing a force balance for the hand/stylus model in 
contact with a compliant environment yields 

 
 ( ) wahandadhandadhand Fxmxxbxxk =−−+− &&&& )( ,(3) 

 
where khand, bhand, and mhand are the parameters of the 
second order hand/stylus model, xd(t) is the desired 
hand motion from the central nervous system, xa(t) is 
the observed trajectory, and Fw(t) is the wall force.   

In order to differentiate between the passive 
benefits of force feedback and the changes in 
voluntary motion that result from force feedback, we 
estimate the desired trajectory of the hand (the 
commanded hand trajectory from the central nervous 
system) from the observed trajectories.  We can do so 
in a four-step process using the model described 
above: 

1) Find an estimate of the desired trajectory xd(t) for 
the first 150 ms after the user has encountered a 
stimulus by averaging all of the trajectories after a 
vibration stimulus occurred.  Because the vibration 
applied no net force, the observed motion should 
closely match the desired motion. 

 

 

Fig. 3.  Hand and environment models 

2) Fit the parameters of a second order model (khand, 
bhand, and mhand) to the first 150 ms of observed 
position and force data for the force feedback cases 
using the above average as the desired trajectory.  The 
fit parameters should be similar across all inputs since 
the user has not yet voluntarily responded. 

3) Construct a mathematical description of the 
relationship between the input (desired trajectory) and 
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the output (observed trajectory) using the average of 
all fit model parameters for that subject.   

4) Using the above relationship and assuming that 
the hand parameters remain relatively constant after 
the user responds to the stimulus, estimate the desired 
trajectory after 150 ms by applying the inverse of the 
relationship to the observed motion. 

We now describe the steps of the above process in 
detail. 

First, the parameters for the proposed hand model 
were estimated for each trial.  The parameters can be 
fit using least squares by first expressing the force 
balance equation (3) at all sample times to be used for 
the fit as 

 
 wallhand FAp =  (4) 

 
where A is a concatenation of the system’s states over 
n samples 
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phand is the column vector of hand parameters 

 
 [ ]Thandhandhandhand mbkp =  (6) 

 
and Fwall is the column of wall forces at all sample 
times 
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In these expressions, t0 represents the time at which 

the user first contacts the wall and t1 through tn are the 
subsequent sample times (taken at 1 kHz).  The time tn 
= 150 ms was chosen so that the parameter estimates 
would only incorporate the passive hand dynamics and 
not any cognitive response to the force stimuli [12].  
The stretch reflex is an active (although not cognitive) 
response that occurs in response to limb flexion at 30 
ms [15]; we will consider the stretch reflex as part of 
the passive hand model as is commonly assumed [14].  
Note that Fw is the commanded force to the Phantom; 
we assume that Fw matches closely with the force 
actually applied to the hand because the frequency 

content of Fw is within the bandwidth of the Phantom 
[13].   

We will assume )(txd to be the average of all actual 
trajectories from t0 to tn for the vibration case.  Because 
only vibrations were applied in that case and no net 
forces, the actual trajectory should closely follow the 
desired trajectory, assuming steady state prior to the 
stimulus, so )()( txtx da = .  This desired trajectory 
should be the same for all cases up to tn, since users 
did not have a chance to voluntarily respond.  The 
velocities )(txd&  and )(txa&  are found by differentiating 
high order (18 terms) polynomial fits to )(txd and xa(t), 
respectively.  A polynomial solution is used to 
minimize high frequency noise in the derivative. The 
acceleration )(txa&& is measured using the accelerometer. 
Once the data is expressed as (7), a least squares 
minimization is used to find the values of mhand, bhand, 
and khand that minimize the error whand FAp − .  For our 
estimation, all hand parameter values were constrained 
to be non-negative. 

An estimate of the desired trajectory for each trial 
can be constructed once the average hand parameters 
across all trials for a given subject have been found, 
assuming that khand, bhand, and mhand remain constant.  
The desired trajectory is found by solving the force 
balance (3) for xd(t) using Laplace transforms (see 
Appendix) 

 
   )())(),(()( tgthtxdeconvtx ad −=  (8) 

 
where h(t) is the impulse response of the system model 
and g(t) is the response due to initial conditions. 

 
2.4. Experimental Design 

 
Six people, aged 19 - 26 volunteered for the study.  

Participants described themselves as right handed with 
no known abnormalities in either hand. 

The experiment conducted was a one factor, four 
level repeated measures design with an independent 
variable of stimulus type.  The four levels of stimulus 
were vibratory, 33% force feedback gain, 67% force 
feedback gain, and 100% force feedback gain.  Each 
subject completed 96 trials and received the same 
stimulus presentation order, in which the levels of 
stimulus were counterbalanced against order.  The 
placement of the wall stimulus in the y-dimension, 
given that the subject had met the speed constraint, 
was also counterbalanced across trials. 



 
3. Results 

 
Figure 4 shows the average intrusion trajectory for 

each wall stimulus type for a typical subject.  Each line 
is the average of 24 trajectories.  We observe that as 
the force feedback gain is increased, average intrusion 
into the wall decreases.  Note that the intrusion 
distance is reduced even before 150 ms when 
voluntary response can begin.  This same trend is 
observed for all subjects up to 150 ms (Fig. 5) 
(F(3,429) = 1562, p < 0.001).  The average maximum 
incursion reached in 150 ms decreases by an average 
of 80% across subjects.  Because a reduction in 
incursion distance is occurring before voluntary 
response, for all subjects, force feedback is acting as a 
physical constraint to the motion of the hand. 
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Fig. 4.  Average trajectories for a typical 
subject 
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Fig. 5.  Average maximum incursion in 150 ms 
for all subjects 

 

Fig. 6.  Typical force fit up to 150 ms 
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Fig. 7.  Hand parameters estimated across 
subject and force feedback gain. Error bars 
show standard error. 

 A sample estimate of hand force over time is 
shown in Fig. 6, along with the forces that result from 
the individual elements.  The small oscillations in the 
damping force are due to the velocity estimation 
process. The results of the hand parameter fits are 
shown in Table 1, with normalized values graphed in 
Fig. 7.  Although trends in each of the normalized 
parameters were significant with respect to force 
feedback level (stiffness F(2,286) = 4.77, p < 0.01; 
damping F(2,286) = 28.12, p < 0.001; mass F(2,286) = 
7.17, p < 0.005), the means for each parameter were 
within one standard deviation of one another.  The 
average variance in force accounted for by the model 
(VAF), given by 
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is shown in Table 2, with an average VAF of 96% 
across all trials. 

Table 1.  Average fit hand parameters per 
subject 

Hand Parameters 
Subject khand [N/m]  bhand [N-s/m] mhand [kg] 

1 136.2 1.62 0.183 
2 113.7 2.66 0.206 
3 69.1 3.97 0.183 
4 60.0 3.36 0.164 
5 37.0 3.19 0.153 
6 85.6 2.44 0.168 

Mean 83.6 2.90 0.200 

Table 2.  Average variance in force accounted 
for  

Force feedback levels 
Subject 33%  67% 100% Mean 

1 95.60% 94.68% 96.36% 95.55% 
2 97.14% 97.29% 96.49% 96.97% 
3 97.92% 97.09% 95.90% 96.97% 
4 97.24% 97.12% 97.35% 97.24% 
5 95.76% 96.08% 96.59% 96.14% 
6 95.64% 95.93% 95.95% 95.84% 

Mean 96.55% 96.37% 96.44% 96.45% 
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Fig. 8.  Average estimated desired trajectories 
for a typical subject 

Using the assumption that hand parameters are 
constant across all force feedback levels, the average 
of all fit hand parameters, per subject, were used to 
extract the desired trajectory xd(t) from each observed 
trajectory xa(t) including t > 150 ms.  Figure 8 shows 
the average extracted desired motion for different 

levels of stimulus for a typical subject.  Each line is 
again the average of 24 trials.  Note that all trajectories 
are nearly collinear up until 150 ms, at which point 
they diverge.  The average turnaround time (time when 
the desired trajectory reaches a maximum) for each 
subject and wall stimulus decreases by up to 70 ms for 
increasing force feedback level, not considering the 
vibration stimulus (F(2,286) = 48.101, p < 0.001) 
(Figure 9).  The vibration stimulus condition was 
significantly different from the 100% case and the 33% 
case, shown using multiple t-test comparisons (p < 
0.005, p < 0.001).  However, all average turnaround 
times were found to be larger than the 100% condition 
average turnaround time, per subject. 

Vibration 33% 67% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Force Feedback Gains

N
or

m
al

iz
ed

 T
ur

na
ro

un
d 

Ti
m

e

 

Fig. 9.  Turnaround times of desired 
trajectories.  Error bars show standard error. 

4. Discussion 
 
Our hypotheses were that force feedback causes a 

physical, passive error reduction before users can 
voluntarily respond to a contact stimulus, and that a 
physical model of the hand/interface system would 
allow an examination of the effects of force feedback 
magnitude on desired motion.  Two different types of 
stimuli were used to examine the first hypothesis; one, 
a vibration that provided information of contact but no 
net force, the other a virtual spring with different levels 
of stiffness.   In order to investigate the second 
hypothesis, a second order model was chosen to 
represent the hand/interface system.  Our experiment 
was designed so that users were at a consistent, steady 
state condition before the stimulus in order to reduce 
variation between trials and increase the accuracy of fit 
for a low-order mechanical model.   

We observe that force feedback does indeed act as a 
physical constraint to the motion of the hand/stylus 
system, where an increase in force feedback gain can 
lead to a dramatic reduction in incursion distance 



before 150 ms. We also observe that a second order 
model works well at encapsulating the passive motion 
of the hand/stylus system, consistently accounting for 
the observed behavior across varying levels of input 
and force feedback gain.  Using the second order 
model and assuming that hand parameters do not 
greatly change after 150 ms, we observe desired 
trajectories that match closely with the actual motion 
when there is no net force on the system.  However, as 
force feedback gain increases, the turnaround time of 
the desired motion decreases for all subjects.  Thus, the 
benefit of force feedback is two-fold: forces passively 
constrain the motion of the hand and provide 
information used to alter desired motion. 

Several assumptions are made that lead to the above 
conclusion.  The primary one is that the hand/stylus 
system behaves as a second order system, with desired 
position as input and actual position as output.  
Previous studies have attempted to fit low order 
models to various limb impedances and have met with 
varying success, with models breaking down when 
unable to encapsulate higher order effects, specifically 
those due to additional degrees of freedom [7] [8].  In 
our case, we have taken precautions to reduce variation 
between trials and restrict the dominant motion to the 
wrist.  Even so, we observe a slight trend in the 
estimation of the damping parameter that varies with 
force feedback level.   The main point, however, is that 
we are using the lowest order model that captures 
essential system dynamics.  Using higher order models 
may achieve better fits, but at a cost of a large 
variation in the values of the fit parameters given the 
short time frame (<150 ms) used to fit.  An additional 
assumption was that the hand parameters remained 
relatively constant after the 150 ms cutoff. This 
assumption was reasonable given that the estimates of 
xd(t) and the hand parameters mhand, bhand, and khand 
were relatively consistent across trials. 

Several factors contributed to inaccuracies of the fit 
model, independent of the low model order.  Primarily, 
the fitting technique requires the knowledge of both 
the desired trajectory and the output trajectory to 
extract the parameters. The desired trajectory varied 
between trials while the desired trajectory used to find 
mhand, bhand, and khand was an average of all the 
subject’s trajectories in the vibration case.  The 
discrepancy between the two could lead to inaccurate 
fits.  Another source of error in the fitting technique is 
that, over the short fitting time, the magnitude of the 
forces due to the individual mechanical components 
are not always of the same order.  Therefore, a large 
change in one parameter will not result in a large 
change in force relative to the force due to the other 
components, causing a range of acceptable fit values. 

4.1 Benefits of Force Feedback 
 
Based upon the results of the described experiment, 

we can make some observations concerning the nature 
of force feedback and its benefits.  A primary 
observation is that there is a fundamental difference 
between force feedback and other forms of tactile 
feedback, such as vibration.  Force feedback has the 
capability to reduce errors without requiring cognitive 
attention.  The implications are that the benefits of 
force feedback can occur before 150 ms, and that 
taking advantage of force feedback does not 
necessarily increase mental workload.  Vibration 
feedback, however, is strictly an information source, so 
the user has to devote attention to derive benefit and 
the error reduction benefit can only occur after 150 ms. 
It follows, then, that force feedback might be more 
useful than vibratory stimuli in situations where 
inaccurate motions can cause serious errors in a short 
time frame.  Another possibility is in complex 
environments or difficult tasks where the user’s mental 
workload is already high.  A situation that fits both of 
these criteria is robotic surgery [16].   During a 
surgical procedure, surgeons often execute complex 
and physically demanding tasks with delicate tissues.  
If soft tissues generate significant constraint forces as 
hard surfaces do (a question for further investigation), 
force feedback would serve to reduce mental workload 
while passively restraining offending motions into 
sensitive tissues. 

Another requirement for force feedback to provide 
this passive error reduction benefit is that forces must 
be generated in a direction opposite to the motion 
causing the error.  Therefore, the passive benefit of 
force feedback is dependent on how ‘error’ is defined.  
An example of where force feedback’s passive benefit 
would not help is when the user needs to exceed a 
force threshold to achieve a goal.  Increasing the force 
feedback gain will only serve to make it more difficult 
to achieve the threshold.  Severing tough connective 
tissue in a surgical task might be one example of this 
case.   Further, the forces generated by force feedback 
need to be high enough to affect the motion of the 
hand/interface system for force feedback to achieve a 
passive benefit. 

Using a model-based approach to analyzing the 
benefits of force feedback allows us to examine 
another possible benefit of force feedback, that of 
increased positioning resolution.  A common example 
motivating the use of force feedback deals with 
attempting to move one’s hand or a tool in a straight 
line.  A free motion using only information-based 
forms of feedback, such as visual signals, is difficult 
and results in an imperfect straight line.  However, 



moving a tool, such as a pencil, in a straight line is 
trivial when using a ruler as a guide.  The ruler 
constrains the motion of the pencil to lie exactly 
alongside the ruler.  Using a ruler transforms a task 
requiring precise position control and mental effort 
into a simple task requiring the user only to push the 
pencil against the ruler.   In a similar manner, force 
feedback can reduce the mental workload and 
positioning control accuracy needed when attempting 
to position a tool alongside an environmental structure.  
Returning to the robotic surgery example, if a surgeon 
needs to position a dissector along the edge of an 
organ, he or she can take advantage of the intrinsic 
stiffness of the organ to balance the force of contact, 
resulting in the dissector being positioned exactly next 
to the organ without exceeding a force threshold and 
damaging the organ. 

A final benefit of a model of both the hand 
impedance and the desired motion in response to 
stimuli is that one can establish a design rule that 
relates force feedback gain, environmental stiffness, 
exploration speed, and maximum ‘error’.  For instance, 
if error is defined as maximum incursion into a 
structure (as it was with our experiment) and 
environment stiffness and force feedback gain are 
fixed, then the hand model and desired trajectory can 
be used to find the maximum exploration speed that 
will not result in exceeding a specified maximum 
incursion.  Or, in the robotic surgery example, given 
typical exploration speeds of the surgeon, the model 
permits determination of the minimum force feedback 
gain required to guarantee that incursions never exceed 
a certain incursion threshold, for a given environment 
stiffness.     

We have described an analysis of a constrained 
force feedback experiment using a low-order model.  
To extend these results to more general force feedback 
environments and still retain a quantitative predictive 
ability, the models of the hand/interface system and the 
environment should be augmented.  The hand system, 
for instance, will behave differently along different 
axes of motion [17] and at different points in the robot 
workspace [13].  Also, not all environments can be 
modeled as a simple spring. An example of a more 
complex environment would be surgery, where tissues 
are viscoelastic and highly nonlinear [18].  Finally, 
desired trajectories may be different for different levels 
of force on the hand.  Choosing different force 
feedback gains, however, can bring a range of 
environment forces and stiffnesses into the force levels 
on the hand encountered in our described experiment.   
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7. Appendix 
 
Taking the Laplace transform of (3) 
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Knowing the initial conditions xa(0) = 0 because we 
define the wall’s position to be at 0, and xd(0) = 0 

because we assume the system is in steady state before 
the wall, we can solve for Xd(s), 
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we can then rewrite Xd(s) as  
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Solving for h(t) by taking the inverse Laplace 
transform of (13) 
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where 
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Similarly, solving for g(t) 
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Because division in the frequency domain is the same 
as deconvolution in the time domain 
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