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Abstract

In this paper we present an approach to estimating the contact state
between a robot and its environment during task execution. Contact
states are modeled by constraint equations parametrized by time-
dependent sensor data and time-independent object properties. At
each sampling time, multiple model estimation is used to assess the
most likely contact state. The assessment is performed by a hid-
den Markov model, which combines a measure of how well each
set of constraint equations fits the sensor data with the probabil-
ity of specific contact state transitions. The latter is embodied in a
task-based contact state network. The approach is illustrated for a
three-dimensional peg-in-hole insertion using a tabletop manipula-
tor robot. Using only position sensing, the contact state sequence is
successfully estimated without knowledge of nominal property val-
ues. Property estimates are obtained for the peg dimensions as well
as the hole position and orientation.

KEY WORDS—contact estimation, contact modeling, hid-
den Markov model, machine perception, multiple model es-
timation, task network

1. Introduction

One aspect of machine perception is the automatic determina-
tion of contact states and the object properties associated with
those states. Such information is useful in a broad range of
manipulation problems. A first category involves those tasks
for which the current contact state dictates the motion or con-
trol strategy to be applied. Force controlled assembly belongs
to this class of problem for which knowledge of both contact
states and property values is important. Significant progress

The International Journal of Robotics Research
Vol. 23, No. 4–5, April–May 2004, pp. 399-413,
DOI: 10.1177/0278364904042195
©2004 Sage Publications

for this application has been made by De Schutter et al. (1999)
and Lefebvre, Bruyninckx, and De Schutter (2003).

A second category involves those tasks for which machine
perception could enhance the overall task performance. In
current teleoperation applications for example, the operator is
responsible for interpreting sensor feedback from the remote
manipulator. Subsequent manipulation strategies are based on
this interpretation. In many cases, however, machine percep-
tion of the remote environment could enhance the operator’s
perception of the environment and thereby dramatically im-
prove task performance (Debus et al. 2001). For example, in
remediation of toxic waste dumps, quantitative measurements
of the size and weight of the containers helps to infer their con-
tents and to determine optimal handling strategies (Griebenow
1994). Additional application areas include undersea mining
and salvage, interplanetary exploration, and the defusing of
explosives.

In this paper, we investigate a formalism for a perceptual
system based on contact state estimation. The approach as-
sumes known (i) a task description, expressed as a network of
contact states, and (ii) contact state descriptions, using con-
straint equations, based on the available set of sensors, and
parametrized by unknown object properties. Nominal param-
eter values of the objects in contact are not assumed. Thus,
the contact state of a cylinder sliding on a plane can be distin-
guished regardless of the cylinder’s radius and an estimate of
the unknown radius is also obtained. The approach is demon-
strated in this paper using only kinematic measurements col-
lected during object manipulation to estimate contact states
and their associated local geometric properties (e.g., dimen-
sion, orientation, location).

The paper is arranged as follows. In the next section we
review the framework employed to estimate contact states and
object properties from sensor data. Each part is explained and
related prior work is presented. In the following section we
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describe how contact states of objects can be described us-
ing sets of parametrized position-based constraint equations.
Next, property estimation is discussed and the concept of
multi-pass state estimation is introduced to improve equation
conditioning. In Section 5, multiple model estimation using
contact-point error distances as inputs of a hidden Markov
model (HMM) is presented as a means to estimate the active
contact states. In the subsequent section we describe an ex-
perimental evaluation of this approach. A three-dimensional
peg-in-hole insertion is carried out and the contact state se-
quence between the peg and the hole is estimated as well as
the geometrical properties of the peg and hole. Conclusions
are presented in the final section of the paper.

2. Approach

The work described in this paper builds on the framework for
a robotic perceptual system first proposed in Dupont et al.
(1999). The perceptual system has as its inputs a description
of the manipulation task as a sequence of contact states, the
set of object properties to identify and the available sensor sig-
nals (e.g., position, force, vision). Its outputs are the sequence
of contact states and their associated properties. These can
include object shape, mass distribution, compliance, surface
friction and texture. In this paper, however, only kinematic
sensors will be considered; and as a consequence only ge-
ometric properties (i.e., dimension and orientation) will be
discussed.

The structure of the perceptual system is motivated by four
fundamental observations involving contact states, constraint
equations, and task descriptions.

(i) Contact states describe how two objects are in contact.
In this paper, a geometrical description of contacts is
used to characterize their state.As an example, Figure 1
illustrates a possible set of contact states associated with
a peg-in-hole insertion task. As pictured, contact states
can consist of no contact between the objects (C1), a
single contact (C2 andC3) or multiple contacts (C4).

(ii) Object properties are measurable only in certain con-
tact states. The mechanics of the contacts and the avail-
able sensing modalities determine when each property
is accessible. For example, the weight of an object can
be estimated from robot force measurements only when
it is freely supported by the robot, and the friction co-
efficient between two surfaces can only be estimated
when they are sliding against each other.

(iii) Each contact state can be described by a set of con-
straint equations. A mathematical description of the
physics governing the contact state, written as con-
straint equations, is used to relate the sensor data and the
properties of the objects in contact. Classical examples

of this approach include the estimation of robot kine-
matic and dynamic parameters. In this paper we focus
on kinematic constraints arising due to contact between
the manipulating object and objects in its environment.

(iv) Tasks are sequences of contact states. Manipulation
tasks are readily described as a succession of contact
states. For example, a simple pick-and-place task might
include a sequence of five states, composed from a set of
three distinct states: no-contact, grasp-on-table, freely-
support-object, grasp-on-table, and no-contact. Tasks
may be represented as a network with states as nodes
and allowed transitions between states as links (e.g.,
Hannaford and Lee 1991; Cao and Sanderson 1994;
McCarragher and Asada 1995; Rosen et al. 2002).

Using these concepts, the perceptual system is based on
a contact state estimation algorithm composed of three parts:
contact state modeling, property estimation and a contact state
decision test. In this paper, contact state estimation is imple-
mented using multiple model estimation. This technique is il-
lustrated in Figure 2. Given a sequence of sensor data points,
all corresponding to a particular contact state, the property
estimation problem uses the contact state models to estimate
properties of the manipulated objects.

For the contact state decision test, two complementary ap-
proaches are employed here. First, estimation residuals are
used to judge how well a portion of the data stream corre-
sponds to a path satisfying the constraint equations for a par-
ticular contact state. Secondly, conditional probability theory
is used to adjust these results to account for knowledge of
prior and anticipated contact states as embodied in the task’s
contact state network.

The reader can anticipate that the success of a contact state
estimator will depend on the set of contacts and available sen-
sors as well as the richness of the sensor data set. In the work
presented here, only kinematic data are used to estimate local
geometric properties. The exclusion of force/torque sensing
is motivated by practical considerations encountered by the
authors; force/torque sensing is not always used on industrial
systems, due to cost and reliability concerns (e.g., undersea
oil platform maintenance).

2.1. Prior Work

State estimation has been investigated in the literature in sev-
eral contexts. De Schutter et al. (1999) and Lefebvre, Bruyn-
inckx, and De Schutter (2003) have employed state estimation
in the context of compliant motion control. In this applica-
tion, the control law depends on the contact state and accurate
knowledge of the geometric parameters improves controller
performance. Pook and Ballard (1993) employed state estima-
tion in order to understand the qualitative control characteris-
tics of an example task performed on a teleoperated system.
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No Contact (C1) Contact 2 (C2) Contact 3 (C3) Contact 3,4 (C4)

Fig. 1. Possible contact states during peg-in-hole insertion.
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Fig. 2. Multiple model estimation.

Delson and West (1996) used human demonstration to pro-
gram robots and in the process had to segment the data into
subtasks that facilitated the generation of a robot program.

A variety of modeling approaches have been employed for
contact state estimation. The most common methods include
HMMs (Hannaford and Lee 1991; McCarragher and Hov-
land 1998; Rosen et al. 2002), generalized likelihood ratio
tests (Eberman 1997), qualitative reasoning with thresholding
(McCarragher 1994a), neural networks for offline segmenta-
tion (Fiorini et al. 1992) and Petri nets (McCarragher 1994b).

Methods based on Boolean combination of thresholds sig-
nals (Schulteis, Dupont, and Howe 1997) or techniques using
probabilistic thresholds (De Schutter et al. 1999; Lefebvre,
Bruyninckx, and De Schutter 2003) also appear. In the latter,
for example, contacts between a manipulated object and the
environment are modeled as virtual mechanisms whose ge-
ometry and nominal parameter values are known. For each
contact state, an extended Kalman filter is designed. These
filters are used to estimate geometric uncertainties using mo-
tion data, force data or both. The filters’ innovations are then
used with Bayesian rules to monitor contact state during ma-
nipulation tasks.

Threshold-based techniques usually do not employ a net-
work of contact states and so assume that all contacts are
equally likely. An exception is the work of Eberman (1997),
in which a maximum likelihood estimator, combined with a
task network, is used to distinguish between multiple models

representing the number and the direction of constraints for a
point moving in a maze.

The major contribution of this paper is a contact state esti-
mation method combining multiple model estimation with a
HMM representation of the robot’s task (providing a network
of allowable contact states and probabilities of transitions).
This approach contrasts with prior applications of HMMs to
contact state estimation in which the HMM was trained on raw
sensor data (Hannaford and Lee 1991). Instead, the HMM de-
veloped here employs estimation residuals corresponding to
contact point error distance for each contact state.

There are several advantages to this approach. First, only
position data are needed.A second advantage is that, by elimi-
nating time-varying unknowns from the estimation equations,
nominal values need not be assumed for the estimated prop-
erties describing the objects in contact. Thus, the contact state
of a cylinder sliding on a plane can be distinguished regard-
less of the cylinder’s radius and an estimate of the unknown
radius is also obtained.

3. Contact State Modeling

In this paper, contact states are modeled using their kinematic
constraints. The associated properties are the dimensions and
locations of objects, all of which can be estimated based on
point contact locations.To model a contact state between a ma-
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Gripper

PegHole

Fig. 3. Kinematic closure equation.

nipulated object and an environment object, constraint equa-
tions are first developed which describe the coincident contact
points on each.The coordinates of these points are then related
through a kinematic closure equation. To avoid the need for
nominal values of geometric parameters, path constraints are
imposed in a sufficient number to allow elimination of time-
dependent contact coordinates. To measure a contact state’s
goodness of fit for a segment of sensor data, the error vector
in the closure equation is projected on a line or plane orthogo-
nal to the remaining time-varying contact coordinates. These
steps are detailed in the subsections below.

3.1. Contact Point Constraints

Each contact state can be expressed using sets of parametrized
constraint equations that describe the position of the contact
state in different frames. For example, point contact between
a manipulated object and an environment object can be ex-
pressed as

fj

(
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c
(t), Y m

c
(t), Zm

c
(t)

) = 0

gj

(
Xe

c
(t), Y e

c
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(1)

Here,fj andgj are vector-valued functions of the contact’s
coordinates written with respect to body frames of the ma-
nipulated object,{Xm

c
, Y m

c
, Zm

c
}, and the environment object,

{Xe
c
, Y e

c
, Ze

c
}. Examples are provided in Section 6.2.

3.2. Mapping Contact Point Coordinates to Sensor
Measurements

In this paper, the only information assumed known regarding
the manipulating robot is the gripper position and orienta-
tion. Therefore, a mapping between the sensor measurements
and the contact point is defined to describe the motion of the
contact point in the sensor frame, as shown in Figure 3.

Ro, Rg, Rm, andRe represent coordinate frames for the
manipulating robot, the gripper, the manipulated object and
the environment, respectively.T

j

i represents a mapping from
framej to framei.

In order to express the contact point in the sensor frame, the
functions described in eq. (1) are related through the kinematic
closure equation:
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Here,T g
o
(t) is a homogeneous transform matrix which relates

the gripper frame to the world frame based on the geometry
of the remote manipulator. Similarly,T m

g
(t) relates the ma-

nipulated object to the gripper frame, andT e
o
(t) relates the

environment object body frame to the sensor frame.
Substituting the contact constraints (1) into the kinematic

closure equation (2), we can express the geometric constraints
characterizing the contact states in terms of the (joint angle)
sensor measurements and the properties associated with the
objects in contact.

3.3. Contact Topology

In the kinematic closure equation (2), the left- and right-
hand sides represent the fixed-frame coordinates of the contact
point on the manipulated object and on the environment ob-
ject, respectively. This equation can be modified to obtain a
residual vector,�εo, corresponding to the error between the two
contact points:
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When a contact state is active, the residual vector computed
from eq. (3) should be small when evaluated at the state’s
constraints of eq. (1).

Equations (1) and (3) are a set of nonlinear algebraic equa-
tions, which are parametrized by time-independent geometric
parameters and by six time-dependent contact coordinates.
In order to avoid the need for nominal values of the time-
independent geometric parameters, the time-varying contact
coordinates are to be eliminated.

By projection, up to two time-varying contact coordinates
can be eliminated from eq. (3) and so four additional con-
straints must be provided by the contact state constraints of eq.
(1). Polyhedral contacts provide the four needed constraints
based on their geometry alone. For example, in a vertex-face
contact state, constraining the contact point to a vertex elimi-
nates three time-varying coordinates. Constraining the second
contact point to lie on the face of the other object imposes a
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fourth constraint. As a second example, in an edge–edge con-
tact state, each edge imposes two constraints on the contact
coordinates, again giving a total of four constraints.

3.3.1. Anticipated Path Constraints

A contact state composed of two curved surfaces is subject
only to the two constraints limiting the contact points to the
surfaces. To eliminate the time-varying coordinates in eq. (3),
two more constraints are needed. Consider the example of
contact 2 in Figure 1 in which the rim of the cylinder slides on a
planar surface. Forcing the cylinder’s contact point to lie on the
rim imposes two constraints while forcing the second contact
point to lie on the plane imposes a third constraint. In cases
such as this, additional constraints can only be obtained by
imposing limitations on the estimable paths within the contact
state. When such constraints are imposed, the system can only
detect those portions of the contact state corresponding to
these special motions.

For the example of a cylinder sliding on a plane, there are
two possible path constraints. One is to fix the contact point
on the rim of the peg so that it slides without rolling on the
plane. The other possibility is to force the peg to follow a par-
ticular curve on the surface of the plane. Of these two possible
path constraints, the first is much more likely to occur as the
peg is manipulated during the contact state. To maximize the
opportunity to detect a contact state, the most likely path con-
straints are selected to define the constraint equations used
for estimation. These constraints are referred to as “antici-
pated path constraints”, i.e., the paths that the manipulator is
likely to produce at some point during the contact state. Since
the manipulator is not forced to follow an anticipated path
constraint, successful estimation of the contact state depends
on the manipulator following the path constraints for at least
some short time interval during the associated contact state.

Note that it is also possible to use anticipated path con-
straints to impose more than four constraints on the contact
coordinates. This can be done to further simplify the residual
equations and so improve conditioning during estimation by
reducing the number of time-independent unknowns to be es-
timated. Anticipated path constraints for each of the contacts
appearing in Figure 1 are provided in Section 6.2.

In summary, the class of objects that can be included in the
framework presented here is as follows.

• Polyhedral objects, where the possible contacts include
contact between vertices, edges, and faces. All can be
modeled as a combination of one-point contacts (e.g., a
line contact can be modeled as two one-point contacts).

• Objects with curved surfaces, for which four constraints
on the two contact points are imposed either by the ge-
ometry or by restrictions on the estimable paths within
the contact state.

3.4. Formulation of Time-Independent Residual

For each contact state of a task, the residual vector defined
by eq. (3) is reduced to a scalar which depends only on time-
varying inputs (which are known) and time-independent un-
known parameters. This process is formalized in the following
five steps.

1. Body coordinate frames are defined for the manipulated
and environment object involved in the contact.

2. For each object, geometric constraints on the contact
point are defined with respect to the selected body frame
in the form of eq. (1). These equations describe the
sets of possible contact points on the two objects that
correspond to the particular contact state.

3. Anticipated path constraints are defined with respect to
the body frames so that the total number of constraints
on the time-dependent contact coordinates due to both
geometry and path is at least four.

4. The constraints from steps 2 and 3 are substituted into
the residual vector defined in eq. (3).

5. The residual vector is made independent of the remain-
ing time-varying contact coordinates by taking its pro-
jection along the line or plane orthogonal to the time-
varying coordinates. The projected magnitude is used
as the scalar residual in contact state estimation.

The projection procedure is comprised of two steps. First, a
change of coordinates is used to isolate the time-varying con-
tact components among{Xm
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(4)

While not shown here, when the two time-varying components
are split between the two bodies (e.g., edge–edge contact), it
is still possible to find a change of coordinates such that each
time-varying component appears in only one component of
the residual vector.

The final step of the projection procedure is to identify a
projection vector orthogonal to the time-varying coordinates.
In eq. (4), neglecting the fourth component, the body-frame
projection vector is seen by inspection to be�nm = [0, 1, 0]T
which yields the projected magnitude

εp = �nm · �εm. (5)
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This scalar depends only on time-varying known inputs
and time-independent unknown parameters.

The projection vector�nm, which is orthogonal to the time-
varying coordinates in the body frame, is recognized as the
contact normal. In addition, the projected magnitude of the
residual vectorεp along this normal corresponds to the inter-
penetration distance, with its sign indicating either the inter-
penetration of the two objects or the distance between them.

A special case occurs when an extra path constraint is im-
posed which reduces the number of time-varying coordinates
to be eliminated by projection to one. In this case, the resid-
ual vector (4) can be projected on the plane orthogonal to the
time-varying coordinate or on any vector in that plane, includ-
ing the normal vector. If planar projection is used, the scalar
residual can be taken as the magnitude of the projected vector
in framei,

εp = ∥∥�εi − (�t i · �εi
) �t i

∥∥
2
, (6)

in which�t i is a unit vector in the direction of the time-varying
coordinate. In this paper, both normal and planar projections
are used.

4. Property Estimation

Using the approach described above, each contact state is ex-
pressed as a scalar residual equation,εp, which is parametrized
by the properties of the two objects in contact and by the avail-
able sensing information:

εp = F(qi, Pj ), i = 1, . . . , 12; j = 1, . . . , η. (7)

Here,qi are the time-dependent elements of the matrixT g
o
(t)

corresponding to the kinematic data from the manipulating
robot andPj is the vector of properties associated with the
objects in contact. Note that this equation might not be in its
minimal form, resulting in non-identifiable parameters. Pa-
rameters are considered identifiable when they are multiplied
by independent input signals. If multiple parameters are as-
sociated with the same input signal, then they are grouped
together to avoid linear dependency of the Jacobian matrix
(Hollerbach and Wampler, 1996). This concept is illustrated
by the following equation:

εp = q1(P1 + P2) + q2 cosP3 + P4. (8)

By inspection, it is clear thatP1 andP2 are not individually
identifiable since they both multiply the same input. Their
sum, however, forms a single identifiable parameter.

4.1. Estimation Algorithm: Nonlinear Least-Squares

Based on eq. (7), a nonlinear least-squares algorithm is used
to estimate the propertiesPj that minimize the residualεp

given the kinematic dataqi of the manipulating robot. The

Levenberg–Marquardt algorithm is used since it is robust to
the choice of initial parameter values (Moré 1977). A wide
range of initial conditions was successfully used experimen-
tally. In the experiment presented in this paper, initial parame-
ters were arbitrarily set to 1% of the parameters’actual values.

In the multiple model estimation shown in Figure 2, the
parameters of all contact states are estimated simultaneously
in a moving data window of fixed lengthξ . The selection
of the moving data window lengthξ is determined by two
considerations. Its lower bound is provided byη, the number
of properties to be estimated in eq. (7). This is the minimum
number of time steps needed to solve the overdetermined set
of equations representing the contact states. Its upper bound
corresponds to the minimum time interval a contact state is
expected to be active. For a minimum time intervalTm and
sampling frequencyFs , the window length is bounded by

η < ξ < Fs · Tm. (9)

In this paper, parameter estimates are first computed to per-
form contact state estimation and subsequently refined to ob-
tain final values. In the first case, estimates are computed us-
ing the moving data window described above. Final values
are computed by estimating over the entire data set for which
contact states have been estimated as active.

4.2. Equation Conditioning and Multi-Pass Estimation

If a contact state is active and its associated contact equation
is well conditioned (i.e., linear independency of the Jacobian
matrix relating the parameters to the equation), then the con-
straint equations can be expected to fit the sensor data and to
provide, through nonlinear least-squares, good estimates of
the parameters and consequently small residuals.

Input trajectories are considered exciting when the con-
dition number computed during the estimation step is below
a user-defined threshold. The condition number provides an
upper bound on the error magnitude of the estimates (Lawson
and Hanson 1974), and it has been shown that a condition
number of 100 or less is well suited for estimation (Schröer
et al. 1992). As a consequence, estimation data windows with
condition numbers exceeding this threshold are discarded.

The condition number can also be decreased by eliminat-
ing parameters multiplying low-excitation inputs. Such elim-
ination can be carried out online by substituting parameter
estimates from previously identified contact states into the
estimation residuals to be used to estimate subsequent con-
tact states. The assumption inherent in this approach is that the
contact states occurring early in a task experience high excita-
tion and consequently exhibit low condition numbers. When
this assumption is not met, a robust alternative is multi-pass
estimation.

In this approach, the system first estimates those contact
states for which high input excitation is most likely.After these
states are identified during task execution, their parameter
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estimates are used to estimate contact states occurring both
prior to and subsequent to these states. If the well-conditioned
states occur early in the task then most of the estimation can be
performed online. If these states occur near the end of the task,
then multi-pass estimation corresponds to post-processing in
its estimation of the early contact states.

In this paper, multi-pass estimation is implemented offline
to allow for arbitrary ordering of the contact states during task
execution.

5. Acceptance Test by Hidden Markov Model

As depicted in Figure 2, the residuals of well-conditioned data
windows become the inputs to an acceptance test that provides
an estimate of the contact state. The approach employed here
uses a HMM to combine the residuals, representing how well
the constraint equations fit the sensor data, with the probability
of specific contact state transitions, embodied in a task contact
state network.

A HMM can be described as a probabilistic observer by
which a stochastic hidden process can be observed using the
probabilistic structure of the task state network and a proba-
bilistic relationship between the states and one or several ob-
servable stochastic signals. The contact state network of the
HMM is described byn, the number of states,ρ, then-vector
of initial state probabilities, andA, then × n state transition
probability matrix (Rabiner 1989) as shown in eq. (10):

A =
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a11 a12 · · · a1n

a21 a22 · · · a2n

...
...
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(10)

The probabilistic relationship between the observable sig-
nal and the different states that comprise the task network
is given by the observation sequence,O, of lengthT . For a
continuous signal this relationship can be described using a
probability density function,B(O). Gaussians are used here
for practicality:

Bi(Ot) = 1

(2p)1/k|Ui |1/2
exp

{
1

2
(Ot − mi)

T U−1
i

(Ot − mi)

}

with 1 ≤ i ≤ n; 1 ≤ t ≤ T . (11)

Here,k represents the maximum number of components of
the signalO. Also,mi andUi are ak × 1 vector of means and
ak × k covariance matrix, respectively.

In summary, the inputs and output of the HMM are as
follows.

Inputs. Number of states,n; initial state probability,ρ;
state transition probability,A; observable signal,O; and prob-
ability density function,B(O), defined bymi andUi .

Output. Estimated sequence of states associated with the
observation sequence,O.

Computing the estimated sequence of states,Q =
q1q2q3 . . . qT , associated with observation signal,O, con-
sists of finding theQ that minimizesP(O, Q/λ), where
λ = (n, ρ, A, B). The conditional probabilityP(O, Q/λ)

can be expressed as in Rabiner (1989):

P(O, Q/λ) =
ρq1Bq1(O1)aq1q2Bq2(O2)aq2q3 · · · aqT −1qT

BqT
(OT ).

(12)

To solve the minimization problem efficiently, a dynamic
programming technique known as theViterbi algorithm is em-
ployed (Viterbi 1967).As a result, each data point is classified
by contact state.

6. Experiment: Three-Dimensional Peg-In-Hole
Insertion

In this section, the implementations of the proposed contact
and property estimation techniques are described for a table-
top manipulator. As an example of a common assembly task,
peg-in-hole insertion is considered. The goal of the experi-
ment is to estimate the sequence of contact states composing
the task and to extract associated task properties. These prop-
erties, summarized in Table 1, include the radius and length
of the peg as well as the location and orientation of the hole.

6.1. System Configuration

A PHANToM® haptic device, as shown in Figure 4, is used
as the manipulating robot. The positions of the system’s six
joints are measured using high-resolution optical encoders.
The kinematics of the robot is known and a closed-loop cali-
bration technique (Hollerbach and Wampler 1996) is used to
improve the absolute accuracy of the system.

A cylindrical peg is attached directly to the tip of the manip-
ulator robot. Holes of different clearances are drilled perpen-
dicularly to the surface of a rectangular aluminum block that
is mounted on a three-degrees-of-freedom vise (roll–tilt–pan).
The insertion is performed manually, using the manipulating
robot as a way of recording the kinematic data.

Table 1. Estimated Parameters
Rp Peg radius
Lp Peg length
Rh Hole radius

Hx, Hy, Hz Hole’s center coordinates
β1, β2 Orientation (pitch and yaw) of the plane

αi Angular coordinate locating the contact
point on the rim of the peg for contacti

δi Angular coordinate locating the contact
point on the rim of the hole for contacti
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Fig. 4. Experimental apparatus: PHANToM 1.5, cylindrical
peg and orientable hole.

6.2. Contact Constraints

In the spatial peg-in-hole insertion described in Figure 1, four
primary contacts can be defined as depicted in Figure 5. In
contact 2, for example, the contact point belongs to the bottom
rim of the peg and to a plane in the environment frame.

Additional surface, line, and combined one-point contacts
can occur; however, parametrizations of the primary contacts
can be selected to include all of the desired geometric proper-
ties. Formulation of constraint equations for the primary con-
tacts proceeds using the five steps developed in Section 3.4.

Step 1. Frames are assigned to the peg and hole respec-
tively, such that their location and orientation correspond with
the center and axis orientation of both objects.

Step 2. Using eq. (1), we can describe the position based
constraint equations associated with each contact state as
follows.

Contact 2

Xm

c
(t) = Rp cosα2(t)

Y m

c
(t) = Rp sinα2(t)

Zm

c
(t) = 0

Xe

c
(t) = Xe

c
(t)

Y e

c
(t) = Y e

c
(t)

Ze

c
(t) = 0

(13)

Contact 3

Xm

c
(t) = Rp cosα3(t)

Y m

c
(t) = Rp sinα3(t)

Zm

c
(t) = Zm

c
(t)

Xe

c
(t) = Rh cosδ3(t)

Y e

c
(t) = Rh sinδ3(t)

Ze

c
(t) = 0

(14)

Contact 4

Xm

c
(t) = Rp cosα4(t)

Y m

c
(t) = Rp sinα4(t)

Zm

c
(t) = 0

Xe

c
(t) = Rh cosδ4(t)

Y e

c
(t) = Rh sinδ4(t)

Ze

c
(t) = Ze

c
(t).

(15)

As summarized in Table 1,Rp andRh represent the peg and
hole radius, andαi andδi are the time-dependent angular co-
ordinates locating the contact point on the rim of the peg and
on the rim of the hole, respectively.

Step 3. Only three geometric constraints were provided for
each contact state in step 2. Thus, at least one anticipated path
constraint is needed for each contact state. These constraints
are based on paths the operator is likely to employ during
the assembly task. While not unique, those described below
have been found to be well suited to the task. Note that the
minimum number of anticipated path constraint is added for
contact 2, while two anticipated path constraints are added for
contacts 3 and 4.

Contact 2. The peg slides on the plane without rolling.
Thus, the contact point on the peg is fixed. As a consequence,
α2(t) becomes time-independent in eq. (13).

Contact 3. The peg slides, without rotating about its axis,
across a fixed point on the rim of the hole. Thus, the con-
tact point is fixed on the hole’s rim, while it describes a line
on the side of the peg, introducing two more constraints. As
a consequence,α3(t) andδ3(t) become time-independent in
eq. (14).

Contact 4.The peg slides without rolling along the cylindri-
cal interior of the hole, parallel to the hole’s axis. The contact
point is fixed on the peg and describes a line on the interior
surface of the hole, introducing two constraint equations. As
a consequence,α4(t) andδ4(t) become time-independent in
eq. (15).

Step 4. To define the residual vector (3), the following
assumptions are made.
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Contact 3 Contact 4Contact 1 Contact 2
Fig. 5. Primary one-point contacts for peg-in-hole insertion.

1. The position of the gripper in the base frame is known
(T g

o
(t) is known).

2. The peg does not slip in the gripper (T m
g

is time-
independent).

3. The shape of the manipulated object is known (cylin-
drical peg).

4. The grasping configuration of the peg is known.

5. Objects are assumed to be rigid.

6. The hole stays fixed (T e
o

is time-independent).

7. The orientation of the hole’s axis, while unknown, is
orthogonal to the surface in which it is drilled.

Under these assumptions, eq. (3) can be reduced to the
following set of equations:




εx(t)

εy(t)

εz(t)

0




o

=




q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 Lp

0 0 0 1







Xc(t)

Yc(t)

Zc(t)

1




m

−




cosβ2 0 sinβ2 Hx

sinβ1 sinβ2 cosβ1 − sinβ1 cosβ2 Hy

− cosβ1 sinβ2 sinβ1 cosβ1 cosβ2 Hz

0 0 0 1







Xc(t)

Yc(t)

Zc(t)

1




e

. (16)

As shown in Table 1,β1 andβ2 describe the orientation of
the plane,Lp is the length of the peg, andHx , Hy , Hz describe
the hole’s center coordinates.qij are known functions of the
robot’s kinematic parameters and joint angles. The vectors
[Xm

c
(t), Y m

c
(t), Zm

c
(t)]T and [Xe

c
(t), Y e

c
(t), Ze

c
(t)]T represent

the substituted constraints from steps 2 and 3.

Step 5. Equation (16) is made time-independent of the re-
maining time-varying coordinates using a two-step process.
First, a change of coordinates is used to isolate the time-
varying unknowns. Then, the components of the resulting
vectors are projected onto a vector orthogonal to these time-
varying coordinates, yielding the projected magnitudeεp.

Contact 2. Xe
c
(t) andY e

c
(t) are the only time-dependent

unknowns remaining in eq. (16). As a consequence, eq. (16)
is transformed to the body frame of the environment object.
Then, the resulting vector is projected along the contact nor-
mal, which is parallel to thez-axis of the frame associated
with the hole, yielding the scalarεp2.




εp2 = εez

εez = K2K2K2 + q14 sinβ2β2β2 + q24 cosβ2β2β2 sinβ1β1β1 − q34 cosβ1β1β1 cosβ2β2β2

+LpLpLp[−q33 cosβ1β1β1 cosβ2β2β2 + q23 sinβ1β1β1 cosβ2β2β2 + q13 sinβ2β2β2]
+RpRpRp cosα2α2α2[−q31 cosβ1β1β1 cosβ2β2β2 + q21 sinβ1β1β1 cosβ2β2β2

−q11 sinβ2β2β2]
+RpRpRp sinα2α2α2[−q32 cosβ1β1β1 cosβ2β2β2 + q22 sinβ1β1β1 cosβ2β2β2

−q12 sinβ2β2β2]
whereK2 = Hz cosβ1 cosβ2 − Hx sinβ2

−Hy cosβ2 sinβ1.

(17)

The bolded variables in this equation, and those that fol-
low, are the identifiable unknown parameters. Note that the
terms formingK2 are not individually identifiable since they
do not multiply any input. In this case, they depend on the
hole’s center coordinates, which clearly cannot be identified
in contact 2.

Contact 3. Zm
c
(t) is the only time-dependent unknown re-

maining in eq. (16).As a consequence, eq. (16) is transformed
to the body frame of the manipulated object. Then, the re-
sulting vector is projected on the plane orthogonal toZm

c
(t),

yielding the projected magnitudeεp3.
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


εp3 = √
ε2

mx
+ ε2

my

εmx = q11K3aK3aK3a + q21K3bK3bK3b + q31K3cK3cK3c − RpRpRp cosα3α3α3

−q11q14 − q21q24 − q31q34

εmy = q12K3aK3aK3a + q22K3bK3bK3b + q32K3cK3cK3c − RpRpRp sinα3α3α3

−q12q14 − q22q24 − q32q34

where




K3a = Hx + Rh cosδ3 cosβ2

K3b = Hy + Rh cosδ3 sinβ1 sinβ2

+Rh sinδ3 cosβ1

K3c = Hz − Rh cosδ3 cosβ1 sinβ2

+Rh sinδ3 sinβ1.

(18)

Contact 4. Ze
c
(t) is the only time-dependent unknown re-

maining in eq. (16).As a consequence, eq. (16) is transformed
to the body frame of the environment object. The resulting
vector is projected on the plane orthogonal toZe

c
(t), yielding

the projected magnitudeεp4.




εp4 = √
ε2

ex
+ ε2

ey

εex = K4aK4aK4a + q14 cosβ2β2β2 + q24 sinβ1β1β1 sinβ2β2β2 − q34 cosβ1β1β1 sinβ2β2β2

+LpLpLp[q13 cosβ2β2β2 + q23 sinβ1β1β1 sinβ2β2β2 − q33 cosβ1β1β1 sinβ2β2β2]
+RpRpRp cosα4α4α4[q11 cosβ2β2β2 + q21 sinβ1β1β1 sinβ2β2β2 − q31 cosβ1β1β1 sinβ2β2β2]
+RpRpRp sinα4α4α4[q12 cosβ2β2β2 + q22 sinβ1β1β1 sinβ2β2β2 − q32 cosβ1β1β1 sinβ2β2β2]
εey = K4bK4bK4b + q24 cosβ1β1β1 + q34 sinβ1β1β1 + LpLpLp[q23 cosβ1β1β1

+q33 sinβ1β1β1]
+RpRpRp cosα4α4α4[q21 cosβ1β1β1 + q31 sinβ1β1β1] + RpRpRp sinα4α4α4[q22 cosβ1β1β1

+q32 sinβ1β1β1]

where




K4a = Hz cosβ1 sinβ2 − Hx cosβ2

−Hy sinβ1 sinβ2 − Rh cosδ4

K4b = −Hy cosβ1 − Hz sinβ1 − Rh sinδ4.

(19)

Equations (17)–(19) allow the estimation ofβ1, β2, Rp, Lp

andKi . The remaining parameters of Table 1 can be estimated
indirectly by solving the algebraic equations provided by the
identifiedKi .

6.3. State Network Modeling

The primary contacts of Figure 5 can be combined and ordered
according to the expected sequence during the insertion task.
The resulting sequence of three contact states is shown in Fig.
1. First, the peg is slid towards the hole on the planar surface
(contact 2). As the peg enters the hole, it pivots on the rim of
the hole (contact 3) and typically maintains this contact until
the other side of the hole is reached. It then remains in double
contact with the rim and the inside of the hole (contacts 3
and 4) until the peg is inserted far enough that the task can be
easily completed.While not unique, this sequence is sufficient
to estimate the properties listed in Table 1.

As shown in Figure 6(a), a state network can be used to
model this sequence of contact statesC1 − C4. Connections
between states are labeled with their state transition proba-
bilities aij as defined in eq. (10). Note thatC1, labeled “no
contact”, represents not only no contact, but also all other
possible contacts besidesC2 − C4. As a second example, an
alternative two-state network appears in Figure 6(b). It is com-
prised of contact stateC2 and contact stateC0, representing
all other possible contact states.

6.4. Residual Conditioning

To investigate input excitation and residual conditioning, the
residuals for experimental data corresponding to the expected
state sequenceC1 − C4 are plotted in Figure 7(a). While not
depicted, the magnitude of the condition numbers corresponds
with that of the residual values.C2 experiences a small residual
when active and possesses the lowest condition number. In
contrast, the residual forC3 is large and poorly conditioned
regardless of whether or not the contact state is active. The
reason for this is thatC2 experiences greater input excitation
thanC3 since its pitch and yaw angles are not constrained by
the hole.

This is a case when the propagation of parameter estimates
can improve the conditioning and estimation of a contact state.
Figure 7(b) depicts the case when the parameter estimates
from the easily estimatedC2 (i.e.,β1, β2, Rp andLp) are sub-
stituted into the residual equations ofC3 andC4. While the
residual ofC4 is largely unaffected, the residual ofC3 de-
creases substantially allowing contact state 3 to be easily esti-
mated. IfC2 always occurred beforeC3 then the contact states
and their parameters could be estimated online in a single pass.

To allow for arbitrary ordering of states, however, a multi-
pass approach, as described in Section 4.2, is employed. In
the first pass, the state network of Figure 6(b) is used to esti-
mate contact stateC2. Then, in a second pass, the four- state
network of Figure 6(a) is employed and parameter estimates
fromC2 are used to re-estimate the residuals for contact states
occurring both before and afterC2. A description of the two
HMMs corresponding to the two state networks follows.

6.5. Contact State Estimation by HMM

The multiple model estimation approach illustrated in Figure 2
is used to estimate the contact state sequence. Orientation and
position of the robot’s tip are recorded at a rate of 25 Hz,
and contact state residuals (17)–(19) are computed at each
time step using a 20-point moving data window. The residuals
constitute the observation signal used as inputs to the HMMs.
The two-state fully connected model of Figure 6(b) is first
utilized to estimate contact state 2 and its parameters. Then,
the four-state, fully connected model of Figure 6(a) is used,
together with the parameter estimates fromC2, to estimate
the remaining states and parameters. The design details of the
four-state HMM are described below.
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Fig. 6. Contact state networks: (a) four-state network based on the contact states of Figure 1; (b) two-state network for
distinguishing contact state from all other possible contact states.
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Fig. 7. Multi-pass estimation: (a) initial estimation residuals; (b) estimation residuals computed using parameter estimates
propagated fromC2.

To obtain values for the initial probability vectorp, the
probability transition matrixA, and the probability density
functionB, training techniques such as the Baum–Welch al-
gorithm can be used (Baum and Petrie 1966). Such techniques
are well suited for applications with large numbers of states,
e.g., speech recognition. Here, the task is comprised of a max-
imum of only four states and so the HMM parameters can be
assigned manually.

The Gaussian probability density functionB describes the
relationship between the observation signal and the contact
states. For each state, this relationship is defined by a mean
vectorm and a covariance matrixU . The observation signals

are the residuals associated with the contact states. When a
contact state is active, the associated residual is expected to
be the smallest, given that the contact equations are well con-
ditioned. This pattern, illustrated in Figure 7(b), is encoded
in m as shown in eq. (20). The rows represent the mean of
the residualsεp2 − εp4, while the columns correspond to the
statesC1−C4. For example,m13 = 2 implies that the expected
mean ofεp2 is 2 when contactC3 is active. The values shown
were determined empirically using a two-step process. First,
several contact sequences were manually segmented, and the
m andU values corresponding to each state of the HMM were
extracted. Then, final values were obtained by averaging these
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experimental values.A similar technique was applied to deter-
mine the values of the covariance matrixU . Note that, since
C4 is composed of contacts 3 and 4, it is expected that both
εp3 andεp4 are low when the state is active:

m =

10 0.5 2 2

90 40 1 1
80 90 5 1


 . (20)

To defineA, the probability transition matrix, andρ, the ini-
tial probability vector, the following task knowledge is used.

• StateC1 (no contact) occurs first:ρ1 > ρj, j = 2, 3, 4.

• State transitions are short:aii > aij , 1 ≤ i, j ≤ 4.

• Transitions betweenC2 andC4 are impossible:a24 =
a42 = 0

For the two-state model of Figure 6(b), the selection of the
probability transition matrix is straightforward. The values
were chosen such that the probability of remaining in the
current state is much higher than the probability of leaving
the state:

A =
[
0.99 0.01
0.01 0.99

]
. (21)

Because there are only two states, this model does not encode
any information about the likely sequence of contact states.
In contrast, the four-state model of Figure 6(a) does permit
the inclusion of such information, and the selection of itsA

impacts what contact state sequences can be successfully es-
timated. This topic is explored in the following subsection.

6.6. Sensitivity of Contact State Estimation to Robot Path

While the state transition probability matrix encodes the prob-
ability of each contact state transition, the particular robot path
employed in task execution may or may not correspond to the
most likely sequence of transitions described byA. To be
robust to variations in robot path, the matrixA must accom-
modate variations in contact state sequence. Such a matrix,
Af (f = flexible transition matrix), which was obtained em-
pirically, is compared here with one which permits only the
most likely state transitions,Ar (r = rigid transition matrix).

Af =




.7 .1 .1 .1
.15 .7 .15 0
.1 .1 .7 .1
.15 0 .15 .7


 (22)

Ar =




.99 .01 0 0
0 .99 .01 0
0 0 .99 .01

.01 0 0 .99


 . (23)

These transition matrices are used to define two models,
HMM2f and HMM2r , respectively. Employing two-pass es-
timation, a two-state model,HMM1 first estimates contact
state 2 and provides estimates of its parameters. In a second
pass,HMM2f andHMM2r estimate their four contact states
using residuals computed with the parameters estimated dur-
ing the first pass. For comparison, manual segmentation was
performed by the operator who pressed a switch at each per-
ceived state transition.

Figure 8 depicts the results for the most likely sequence of
contact states in peg insertion,{C1, C2, C3, C4, C1}. In con-
trast, Figure 9 shows the results for a state sequence including
some unexpected transitions,{C1, C3, C2, C3, C4, C1}. In both
figures, the two-stateHMM1 demonstrates agreement with
manual segmentation. For the most likely sequence of states
in Figure 8, the additional transition flexibility ofHMM2f pro-
duces two short time segments in which the state is falsely
identified. None the less, both models successfully match
manual segmentation for all contact states.

For the unexpected sequence of contact states in Figure 9,
the rigid state transition matrix ofHMM2r introduces many
false transitions to satisfy the state transition matrix. For ex-
ample, the first actual state change is fromC1 to C3. The
rigid model must pass throughC2 in order to make this transi-
tion. The next actual state change is fromC3 to C2. The rigid
model can only make this transition by the three state changes,
C3 → C4 → C1 → C2. The flexible state transition matrix of
HMM2f avoids all of these false transitions and successfully
identifies large portions of the active states. It was found that
this model was successful for a variety of state sequences. In
addition, state estimation was robust to variations in the flex-
ible state transition matrix, eq. (22). These results show that a
flexible state transition matrix can successfully accommodate
a broad range of robot paths during task execution.

6.7. Parameter Estimation

While initial parameter estimates are obtained using moving
data windows during state estimation, final parameter esti-
mates are calculated by time averaging the estimates associ-
ated with every detected time segment of contact statesC2,
C3 andC4. Falsely identified time segments can be identi-
fied using statistical tests and discarded prior to averaging.
As shown in Table 2, parameter estimates for a typical trial
were found to be within 5% of the measured properties. Note
that a relatively large ratio of peg-to-hole diameters (0.98)
was employed to facilitate manual segmentation during algo-
rithm development. Automatic segmentation of smaller ratios
has also been performed successfully. For these cases, a triple
contact state, illustrated in Figure 10, was also estimated.

7. Conclusions

In this paper, a perceptual system based on contact state esti-
mation was presented. The approach employs multiple model
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Table 2. Comparison of Estimated and Directly Measured Parameter Values

Properties Direct Measurement Estimated Value

Rp (peg radius) 12.5± 0.5 mm 11.8± 1 mm
Lp (peg length) 62.7± 0.5 mm 62.1± 1 mm
Hz (hole center,z) –91.0± 0.5 mm –90.8± 1 mm
Hx (hole center,x) 21.0± 0.5 mm 20.6± 1 mm
Hy (hole center,y) –55.0± 0.5 mm –54.8± 1 mm
β1 (hole pitch) 18.0± 0.5 deg 18.5± 1 deg
β2 (hole yaw) 20.0± 0.5 deg 19.2± 1 deg
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Fig. 10. Contact used for small clearance hole.

estimation and uses a HMM as a decision test. Since contact
state estimation is based on property estimation, this approach
provides a unified solution to the two estimation problems.

The experimental implementation demonstrates that the
algorithm can successfully estimate arbitrary contact state se-
quences composing a task. Object properties are estimated to
a level of accuracy far exceeding what could be achieved by an
operator. The only inputs needed by the algorithm are the for-
ward kinematics of the robot, constraint equation descriptions
of the contact states, and a HMM description of the task to be
performed. The flexibility of the proposed approach makes
it straightforward to augment the perceptual capabilities of
an existing system. Furthermore, the technique can be easily
extended to consider additional sensors (e.g., force) and the
estimation of other properties (e.g., inertia, friction).

For the position-based constraint equations employed here,
the residuals were made independent of time-varying un-
knowns by the introduction of anticipated path constraints
and by projection. The resulting estimation problem involves
solving nonlinear algebraic equations over a moving data win-
dow and, owing to the elimination of time-varying unknowns,
nominal parameter values are not needed. In the experimental
example, this means that estimation success is independent of
peg length and radius as well as hole location and diameter.
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