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Abstract

In this paper we present an approach to estimating the contact state
between a robot and its environment during task execution. Contact
states are modeled by constraint equations parametrized by time-
dependent sensor data and time-independent object properties. At
each sampling time, multiple model estimation is used to assess the
most likely contact state. The assessment is performed by a hid-
den Markov model, which combines a measure of how well each
set of constraint equations fits the sensor data with the probabil-
ity of specific contact state transitions. The latter is embodied in a
task-based contact state network. The approach isillustrated for a
three-dimensional peg-in-hole insertion using a tabletop manipula-
tor robot. Using only position sensing, the contact state sequenceis
successfully estimated without knowledge of nominal property val-
ues. Property estimates are obtained for the peg dimensions as well
as the hole position and orientation.

KEY WORDS—contact estimation, contact modeling, hid-
den Markov model, machine perception, multiple model ey

timation, task network

1. Introduction

Contact State
Estimation using
Multiple Model
Estimation and
Hidden M arkov
M odels

for this application has been made by De Schutter et al. (1999)
and Lefebvre, Bruyninckx, and De Schutter (2003).

A second category involves those tasks for which machine
perception could enhance the overall task performance. In
current teleoperation applications for example, the operator is
responsible for interpreting sensor feedback from the remote
manipulator. Subsequent manipulation strategies are based on
this interpretation. In many cases, however, machine percep-
tion of the remote environment could enhance the operator’s
perception of the environment and thereby dramatically im-
prove task performance (Debus et al. 2001). For example, in
remediation of toxic waste dumps, quantitative measurements
of the size and weight of the containers helps to infer their con-
tents and to determine optimal handling strategies (Griebenow
1994). Additional application areas include undersea mining
and salvage, interplanetary exploration, and the defusing of
explosives.

In this paper, we investigate a formalism for a perceptual
stem based on contact state estimation. The approach as-
sumes known (i) a task description, expressed as a network of
contact states, and (ii) contact state descriptions, using con-
straint equations, based on the available set of sensors, and
parametrized by unknown object properties. Nominal param-

One aspect of machine perception is the automatic determirgi€" values of the objects in contact are not assumed. Thus,
tion of contact states and the object properties associated wii§ contact state of a cylinder sliding on a plane can be distin-
those states. Such information is useful in a broad range @ished regardless of the cylinder's radius and an estimate of
manipulation problems. A first category involves those tasi8€ unknown radius is also obtained. The approach is demon-
for which the current contact state dictates the motion or coftrated in '{hlS paper using Only_klnemath measurements col-
trol strategy to be applied. Force controlled assembly belon{fEted during object manipulation to estimate contact states
to this class of problem for which knowledge of both contactd their associated local geometric properties (e.g., dimen-

states and property values is important. Significant progreS9n. orientation, location). _
The paper is arranged as follows. In the next section we

review the framework employed to estimate contact states and
object properties from sensor data. Each part is explained and
related prior work is presented. In the following section we
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describe how contact states of objects can be described us- of this approach include the estimation of robot kine-
ing sets of parametrized position-based constraint equations. matic and dynamic parameters. In this paper we focus
Next, property estimation is discussed and the concept of  onkinematic constraints arising due to contact between
multi-pass state estimation is introduced to improve equation  the manipulating object and objects in its environment.
conditioning. In Section 5, multiple model estimation using
contact-point error distances as inputs of a hidden Markowiv) Tasks are sequences of contact states. Manipulation
model (HMM) is presented as a means to estimate the active  tasks are readily described as a succession of contact
contact states. In the subsequent section we describe an ex- states. For example, a simple pick-and-place task might
perimental evaluation of this approach. A three-dimensional  include a sequence of five states, composed from a set of
peg-in-hole insertion is carried out and the contact state se-  three distinct states: no-contact, grasp-on-table, freely-
guence between the peg and the hole is estimated as well as support-object, grasp-on-table, and no-contact. Tasks
the geometrical properties of the peg and hole. Conclusions may be represented as a network with states as nodes
are presented in the final section of the paper. and allowed transitions between states as links (e.g.,
Hannaford and Lee 1991; Cao and Sanderson 1994,
McCarragher and Asada 1995; Rosen et al. 2002).
2. Approach

Using these concepts, the perceptual system is based on
contact state estimation algorithm composed of three parts:

o -~ _contact state modeling, property estimation and a contact state
(1999). The perceptual system has as its inputs a descripti ecision test. In this paper, contact state estimation is imple-

of tth? rE_elnlfulannt_tastk %S asequt(ajn&:}e of C.(I)né?Ct states,. &nted using multiple model estimation. This technique is il-
setof object properties to identify and the availa € Sensor Sifstrated in Figure 2. Given a sequence of sensor data points,

nals (e.g., position, force, vision). Its outputs are the sequenge corresponding to a particular contact state, the property

.Of contact states and their as_so_uatgd properties. These W mation problem uses the contact state models to estimate
include object shape, mass distribution, compliance, surfa

fricti d text In thi h v Ki t.??operties of the manipulated objects.
riction and texture. In this paper, NOWever, only KINeMatiC g, yhe contact state decision test, two complementary ap-
sensors will be considered; and as a consequence only

i ’ ) di . d orientati il b foaches are employed here. First, estimation residuals are
cd)gceurs'ge‘zjmper les (i.e., dimension and orientation) wi sed to judge how well a portion of the data stream corre-

. . sponds to a path satisfying the constraint equations for a par-
The structure of the perceptual system is motivated by fO“E P ying q P

. . X ular contact state. Secondly, conditional probability theory
fundamental observations involving contact states, constra@tused to adjust these results to account for knowledge of
equations, and task descriptions.

prior and anticipated contact states as embodied in the task’s
(i) Contact states describe how two objects arein contact. contact state network: .
In this paper. a geometrical descrintion of contacts is The reader can anticipate that the success of a contact state
used topchgra'lctegrjize their state. As :n example. Fi ureef[imator will depend on the set of contacts and available sen-
) bie. F1g s%rs as well as the richness of the sensor data set. In the work

illustrates a possible set of contact states associated wit . . .

. . : . resented here, only kinematic data are used to estimate local
a peg-in-hole insertion task. As pictured, contact stat jeometric properties. The exclusion of force/torque sensin
can consist of no contact between the objectg,(a g brop ; N 9

single contact(, andCs) or multiple contacts() is motivated by practical considerations encountered by the
9 2 3 P 4 authors; force/torque sensing is not always used on industrial

(i) Object properties are measurable only in certain con- systems, due to cost and reliability concerns (e.g., undersea

tact states. The mechanics of the contacts and the avaif!l Platform maintenance).

able sensing modalities determine when each property

is accessible. For example, the weight of an object cgn1. prior Work

be estimated from robot force measurements only when

it is freely supported by the robot, and the friction co-State estimation has been investigated in the literature in sev-

efficient between two surfaces can only be estimat@j'm contexts. De Schutter et al. (1999) and Lefebvre, Bruyn-

when they are sliding against each other. inckx, and De Schutter (2003) have employed state estimation

in the context of compliant motion control. In this applica-

(iii) Each contact state can be described by a set of con-  tion, the control law depends on the contact state and accurate

straint equations. A mathematical description of the knowledge of the geometric parameters improves controller

physics governing the contact state, written as comperformance. Pook and Ballard (1993) employed state estima-

straintequations, is used to relate the sensor data and tloe in order to understand the qualitative control characteris-

properties of the objects in contact. Classical exampléies of an example task performed on a teleoperated system.

The work described in this paper builds on the framework fg
a robotic perceptual system first proposed in Dupont et aj
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Fig. 1. Possible contact states during peg-in-hole insertion.
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Fig. 2. Multiple model estimation.

Delson and West (1996) used human demonstration to pm@presenting the number and the direction of constraints for a
gram robots and in the process had to segment the data iptwint moving in a maze.
subtasks that facilitated the generation of a robot program. The major contribution of this paper is a contact state esti-
A variety of modeling approaches have been employed fonation method combining multiple model estimation with a
contact state estimation. The most common methods inclusi®M representation of the robot’s task (providing a network
HMMs (Hannaford and Lee 1991; McCarragher and Howef allowable contact states and probabilities of transitions).
land 1998; Rosen et al. 2002), generalized likelihood ratibhis approach contrasts with prior applications of HMMs to
tests (Eberman 1997), qualitative reasoning with thresholdimgntact state estimation in which the HMM was trained on raw
(McCarragher 1994a), neural networks for offline segmentaensor data (Hannaford and Lee 1991). Instead, the HMM de-
tion (Fiorini et al. 1992) and Petri nets (McCarragher 1994byeloped here employs estimation residuals corresponding to
Methods based on Boolean combination of thresholds sigentact point error distance for each contact state.
nals (Schulteis, Dupont, and Howe 1997) or techniques using There are several advantages to this approach. First, only
probabilistic thresholds (De Schutter et al. 1999; Lefebvrgosition data are needed. A second advantage is that, by elimi-
Bruyninckx, and De Schutter 2003) also appear. In the lattarating time-varying unknowns from the estimation equations,
for example, contacts between a manipulated object and theminal values need not be assumed for the estimated prop-
environment are modeled as virtual mechanisms whose gaties describing the objects in contact. Thus, the contact state
ometry and nominal parameter values are known. For eaoha cylinder sliding on a plane can be distinguished regard-
contact state, an extended Kalman filter is designed. Thdsss of the cylinder’s radius and an estimate of the unknown
filters are used to estimate geometric uncertainties using nradius is also obtained.
tion data, force data or both. The filters’ innovations are then
used with Bayesian rules to monitor contact state during ma-
nipulation tasks. 3. Contact State Modeling
Threshold-based techniques usually do not employ a net-
work of contact states and so assume that all contacts gkghis paper, contact states are modeled using their kinematic
equally likely. An exception is the work of Eberman (1997)constraints. The associated properties are the dimensions and
in which a maximum likelihood estimator, combined with §ocations of objects, all of which can be estimated based on
task network, is used to distinguish between multiple modefint contact locations. To model a contact state between a ma-
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Gripper R,, R,, R,, and R, represent coordinate frames for the
R manipulating robot, the gripper, the manipulated object and
Tg (t) \ g the environment, respectiveli/ represents a mapping from
0 R framej to framei.
- ! In order to express the contact pointin the sensor frame, the
-

I functions describedin eq. (1) are related through the kinematic
closure equation:

X" X.()]°
Y.(r) : Y.(r)
8 m _ e
- oo ol =To| 70l @
1 1
Fig. 3. Kinematic closure equation. Here,T#(r) is a homogeneous transform matrix which relates

the gripper frame to the world frame based on the geometry
of the remote manipulator. Similarly;" () relates the ma-
nipulated object to the gripper frame, affigl(r) relates the

nipulated object and an environment object, constraint equ&Rvironment object body frame to the sensor frame. _
tions are first developed which describe the coincident contact SUPstituting the contact constraints (1) into the kinematic
points on each. The coordinates of these points are then relafipUre €quation (2), we can express the geometric constraints
through a kinematic closure equation. To avoid the need fGP@racterizing the contact states in terms of the (joint angle)

nominal values of geometric parameters, path constraints &S0 measurements and the properties associated with the
imposed in a sufficient number to allow elimination of time-°PI€CtS in contact.

dependent contact coordinates. To measure a contact state’s
goodness of fit for a segment of sensor data, the error vec®8. Contact Topology

in the closure equation is projected on a line or plane orthogPﬁ the kinematic closure equation (2), the left- and right-

nal to the remaining t|me—vary|ng. contact coordinates. The and sides represent the fixed-frame coordinates of the contact
steps are detailed in the subsections below.

point on the manipulated object and on the environment ob-
ject, respectively. This equation can be modified to obtain a
3.1. Contact Point Constraints residual vectolg?, corresponding to the error between the two

Each contact state can be expressed using sets of parametrlczct)anc}act points:

constraint equations that describe the position of the conta e.(1)]° x.)7" X7

state in different frames. For example, point contact betweer) (1) Y.(0) Y. (1)
a manipulated object and an environment object can be ex gy(r) =TT, (1) ZC o T/ (1) ZL R (3)
pressed as ZO 51 ”1

i (Xf-" 0, Y@, Z (t)) =0 When a contact state is active, the residual vector computed

@) from eq. (3) should be small when evaluated at the state’s
constraints of eq. (1).

Here, f, andg, are vector-valued functions of the contact's, Eduations (1)and (3) are a setof nonlinear algebraic equa-
coordinates written with respect to body frames of the mdions, which are parametrized by time-independent geometric

nipulated object{X”, Y”, Z"}, and the environment object parameters and by six time-dependent contact coordinates.
(e, ve, 2e). Examfﬁl’esce;refpr’ovided in Section 6.2. "In order to avoid the need for nominal values of the time-

independent geometric parameters, the time-varying contact

coordinates are to be eliminated.
3.2. Mapping Contact Point Coordinates to Sensor By projection, up to two time-varying contact coordinates
M easurements can be eliminated from eq. (3) and so four additional con-

straints must be provided by the contact state constraints of eq.
In this paper, the only information assumed known regarding.). Polyhedral contacts provide the four needed constraints
the manipulating robot is the gripper position and orientadased on their geometry alone. For example, in a vertex-face
tion. Therefore, a mapping between the sensor measuremesuatact state, constraining the contact point to a vertex elimi-
and the contact point is defined to describe the motion of theates three time-varying coordinates. Constraining the second
contact point in the sensor frame, as shown in Figure 3.  contact point to lie on the face of the other object imposes a

g (X0, Ye0), Z:(1) = 0.
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fourth constraint. As a second example, in an edge—edge c@4. Formulation of Time-Independent Residual
tact state, each edge imposes two constraints on the con@g

t . .
coordinates, again giving a total of four constraints. r each contact state of a task, the residual vector defined

by eq. (3) is reduced to a scalar which depends only on time-
varying inputs (which are known) and time-independent un-
3.3.1. Anticipated Path Constraints known parameters. This process is formalized in the following

. . five steps.
A contact state composed of two curved surfaces is subject

only to the two constraints limiting the contact points to the 1. Body coordinate frames are defined for the manipulated
surfaces. To eliminate the time-varying coordinatesin eq. (3),  and environment object involved in the contact.

two more constraints are needed. Consider the example of
contact 2 in Figure 1 inwhich the rim of the cylinder slideson a
planar surface. Forcing the cylinder’s contact pointto lie onthe
rim imposes two constraints while forcing the second contact
point to lie on the plane imposes a third constraint. In cases
such as this, additional constraints can only be obtained by
imposing limitations on the estimable paths withinthe contact 3. Anticipated path constraints are defined with respect to
state. When such constraints are imposed, the system canonly  the body frames so that the total number of constraints
detect those portions of the contact state corresponding to  on the time-dependent contact coordinates due to both
these special motions. geometry and path is at least four.

For the example of a cylinder sliding on a plane, there are _ ) _
two possible path constraints. One is to fix the contact point 4- The constraints from steps 2 and 3 are substituted into
on the rim of the peg so that it slides without rolling on the the residual vector defined in eq. (3).
plane. The other possibility is to force the peg to follow apar- 5 The residual vector is made independent of the remain-
ticular curve on the surface of the plane. Of these two possible ing time-varying contact coordinates by taking its pro-
path constraints, the first is much more likely to occur as the jection along the line or plane orthogonal to the time-
peg is manipulated during the contact state. To maximize the  y4rying coordinates. The projected magnitude is used

opportunity to detect a contact state, the most likely path con- 55 the scalar residual in contact state estimation.
straints are selected to define the constraint equations used

for estimation. These constraints are referred to as “antici- The projection procedure is comprised of two steps. First, a

pated path constraints”, i.e., the paths that the manipulatordBange of coordinates is used to isolate the time-varying con-

likely to produce at some point during the contact state. Siné&ct components among™”, Y, ZI'; X¢, Y¢, Z¢}. Often, the

the manipulator is not forced to follow an anticipated patfivo time-varying components are associated with one object

constraint, successful estimation of the contact state deperadisl the desired coordinate change corresponds to the body

on the manipulator following the path constraints for at leagtame of that object. For example, if the time-varying com-

some short time interval during the associated contact statgonents ar&(”’ andZ;" then eq. (3) can be transformed to the
Note that it is also possible to use anticipated path colody frame of the manipulated object:

straints to impose more than four constraints on the contac

2. For each object, geometric constraints on the contact
pointare defined with respectto the selected body frame
in the form of eq. (1). These equations describe the
sets of possible contact points on the two objects that
correspond to the particular contact state.

m e

coordinates. This can be done to further simplify the residual &:(1) X ) Xe

. . e . . : &,(1t) Y. IR Y.
equations and so improve conditioning during estimation by . ) =\, ol - (Tf(t)Tg (t)) T:(t) 7
reducing the number of time-independent unknowns to be es{ * “1 1f
timated. Anticipated path constraints for each of the contacts 4
appearing in Figure 1 are provided in Section 6.2. (4)

In summary, the class of objects that can be included in thghile not shown here, when the two time-varying components

framework presented here is as follows. are split between the two bodies (e.g., edge—edge contact), it

is still possible to find a change of coordinates such that each
* Polyhedral objects, where the possible contacts includiene-varying component appears in only one component of
contact between vertices, edges, and faces. All can tee residual vector.
modeled as a combination of one-point contacts (e.g., a The final step of the projection procedure is to identify a
line contact can be modeled as two one-point contactgjrojection vector orthogonal to the time-varying coordinates.
In eq. (4), neglecting the fourth component, the body-frame
+ Objects with curved surfaces, for which four constraintgrojection vector is seen by inspection to/e= [0, 1, 0]”
on the two contact points are imposed either by the gevhich yields the projected magnitude
ometry or by restrictions on the estimable paths within

the contact state. g, =n"-¢&". (5)
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This scalar depends only on time-varying known inputkevenberg—Marquardt algorithm is used since it is robust to
and time-independent unknown parameters. the choice of initial parameter values (Moré 1977). A wide

The projection vectoi™, which is orthogonal to the time- range of initial conditions was successfully used experimen-
varying coordinates in the body frame, is recognized as thally. In the experiment presented in this paper, initial parame-
contact normal. In addition, the projected magnitude of thiers were arbitrarily setto 1% of the parameters’actual values.
residual vectoe, along this normal corresponds to the inter- In the multiple model estimation shown in Figure 2, the
penetration distance, with its sign indicating either the inteparameters of all contact states are estimated simultaneously
penetration of the two objects or the distance between therm a moving data window of fixed length. The selection

A special case occurs when an extra path constraint is iraf the moving data window length is determined by two
posed which reduces the number of time-varying coordinatesnsiderations. Its lower bound is provided/ythe number
to be eliminated by projection to one. In this case, the residf properties to be estimated in eq. (7). This is the minimum
ual vector (4) can be projected on the plane orthogonal to thember of time steps needed to solve the overdetermined set
time-varying coordinate or on any vector in that plane, includf equations representing the contact states. Its upper bound
ing the normal vector. If planar projection is used, the scal@orresponds to the minimum time interval a contact state is
residual can be taken as the magnitude of the projected vectapected to be active. For a minimum time inter¥aland
in framei, sampling frequency,, the window length is bounded by

20 (6) n<§<FsEn (9)

inwhich7" is a unit vector in the direction of the time-varying!n this paper, parameter estimates are first computed to per-

coordinate. In this paper, both normal and planar projectiofi@'m contact state estimation and subsequently refined to ob-
tain final values. In the first case, estimates are computed us-

= [ = (-2)7)

are used. _ - _ > )
ing the moving data window described above. Final values
) ) are computed by estimating over the entire data set for which
4. Property Estimation contact states have been estimated as active.

Using the approach described above, each contact state is
pressed as a scalar residual equatiprnwhich is parametrized
by the properties of the two objects in contact and by the avajka contact state is active and its associated contact equation

A?.)ét Equation Conditioning and Multi-Pass Estimation

able sensing information: is well conditioned (i.e., linear independency of the Jacobian
. ) matrix relating the parameters to the equation), then the con-
& =Flg P),i=1....12j=L....n. (7)) gtaint equations can be expected to fit the sensor data and to

. . provide, through nonlinear least-squares, good estimates of
Here,g, are the time-dependent elements of the malfik) the parameters and consequently small residuals.

corresponding to the kinematic data from the manipulating Input trajectories are considered exciting when the con-

robot andP is the vector of properties associated with th ition number computed during the estimation step is below

objects in contact. Note that this equation might not be in itg user-defined threshold. The condition number provides an

minimal form, resulting in non-identifiable parameters. Paﬂgperbound on the error magnitude of the estimates (Lawson

rameters are considered identifiable when they are multlph%nd Hanson 1974), and it has been shown that a condition

by i.ndepen.dent input sig.nals. If. multiple parameters are 8Rumber of 100 or less is well suited for estimation (Schroer
sociated with the same input signal, then they are 9f°”p%5a|. 1992). As a consequence, estimation data windows with
together to avoid linear dependency_ of the Jac_ob_lan matrl)c()ndition numbers exceeding this threshold are discarded.

(Hollerbach and Wampler, 1996). This concept is |IIustrate%I The condition number can also be decreased by eliminat-

by the following equation: ing parameters multiplying low-excitation inputs. Such elim-
ination can be carried out online by substituting parameter
estimates from previously identified contact states into the
By inspection, itis clear that, and P, are notindividually estimation residuals to be used to estimate subsequent con-
identifiable since they both multiply the same input. Theitact states. The assumption inherentin this approach is that the

sum, however, forms a single identifiable parameter. contact states occurring early in a task experience high excita-
tion and consequently exhibit low condition numbers. When

this assumption is not met, a robust alternative is multi-pass
estimation.

Based on eq. (7), a nonlinear least-squares algorithm is usedn this approach, the system first estimates those contact
to estimate the propertieB; that minimize the residuad, statesforwhich highinput excitation is mostlikely. After these
given the kinematic datg; of the manipulating robot. The states are identified during task execution, their parameter

€, = q1(P1+ P;) + q2COSP3 + P,. (8)

4.1. Estimation Algorithm: Nonlinear Least-Squares
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estimates are used to estimate contact states occurring botfOutput. Estimated sequence of states associated with the
prior to and subsequent to these states. If the well-conditionetiservation sequencé..
states occur early in the task then most of the estimation can beComputing the estimated sequence of stat@s, =
performed online. If these states occur near the end of the taglg.qgs . . . g7, associated with observation signab, con-
then multi-pass estimation corresponds to post-processingsists of finding theQ that minimizesP (0, Q/A), where
its estimation of the early contact states. A = (n, p, A, B). The conditional probability?(O, Q/A)

In this paper, multi-pass estimation is implemented offlinean be expressed as in Rabiner (1989):

to allow for arbitrary ordering of the contact states during task
execution. PO, Q/%) =

Py By (01)a4,4, B4, (02)Aypgs + -+ gy 197 By (Or).

(12)
5. Acceptance Test by Hidden Markov Model

. - . - T Ive the minimization problem efficientl nami
As depicted in Figure 2, the residuals of well-conditioned data 050 e.t N . ation proble eticie ty"”!dy amic
: : . programming technigue known as the Viterbi algorithmis em-
windows become the inputs to an acceptance test that provi &

an estimate of the contact state. The approach employed hséyed (Viterbi 1967). As aresult, each data point is classified
) . . contact state.

uses a HMM to combine the residuals, representing how we
the constraint equations fitthe sensor data, with the probability
of specific contact state transitions, embodied in a task cont&tExperiment: Three-Dimensional Peg-In-Hole
state network. Insertion

A HMM can be described as a probabilistic observer by
which a stochastic hidden process can be observed using thehis section, the implementations of the proposed contact
probabilistic structure of the task state network and a proband property estimation techniques are described for a table-
bilistic relationship between the states and one or several dbp manipulator. As an example of a common assembly task,
servable stochastic signals. The contact state network of theg-in-hole insertion is considered. The goal of the experi-
HMM is described by:, the number of statep, then-vector mentis to estimate the sequence of contact states composing
of initial state probabilities, and, then x n state transition the task and to extract associated task properties. These prop-
probability matrix (Rabiner 1989) as shown in eq. (10):  erties, summarized in Table 1, include the radius and length
of the peg as well as the location and orientation of the hole.

T
p=[p1 P2 - pu
ai; dip - Ay n . .
Uy, Gpp - g with Z =1 6.1. System Configuration
A= . . . - .
: : .o it A PHANToM® haptic device, as shown in Figure 4, is used

ay @y - ay, with Za"f -1 as the manipulating robot. The positions of the system’s six

-1 joints are measured using high-resolution optical encoders.

(10) The kinematics of the robot is known and a closed-loop cali-

o ) ) _bration technique (Hollerbach and Wampler 1996) is used to
The probabilistic relationship between the observable Sigmprove the absolute accuracy of the system.

nal .and the different states that comprise the task ”etworkAcylindricaI pegis attached directly to the tip of the manip-

is given by the observation sequencg, of length7. Fora  yjator robot. Holes of different clearances are drilled perpen-

continuous signal this relationship can be described usingsyarly to the surface of a rectangular aluminum block that

probability density function(0). Gaussians are used hergs mounted on a three-degrees-of-freedom vise (roll—tilt—pan).

for practicality: The insertion is performed manually, using the manipulating
1 1 - robot as a way of recording the kinematic data.

Bi(0)) = WGXP{E(Q—%) U; (OI_mi)}

. Table 1. Estimated Parameters

withl<i<nl<t<T. (12) R, Peg radius

Here, k represents the maximum number of components of  L» Peg length
the signalo. Also, m; andU; are ak x 1 vector of means and R, Hole radius _
ak x k covariance matrix, respectively. H,, H,, H.  Hole's center coordinates
In summary, the inputs and output of the HMM are as  Pv P2 Orientation (pitch and yaw) of the plane
follows. o Angular coordinate locating the contact
Inputs. Number of statesy; initial state probability,o; point on the rim of the peg for contact
state transition probability} ; observable signat; and prob- 8 Angular coordinate locating the contact
ability density functionB(0), defined byn; andU;. point on the rim of the hole for contact
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Contact 3
X" (1) = R, COSas(1)
Y"(t) = R, sinas(t)
Zr() = 2 (0) (14)
X°(t) = R, COS85(t)
Y (t) = R, sinds(t)

Z:(1)=0

Contact 4

X" (t) = R, cosu,(t)

. Y'(t) = R, Sina(r)
Fig. 4. Experimental apparatus: PHANToM 1.5, cylindrical Z"(t) =0 (15)
peg and orientable hole. ¢
X:(t) = R, C0S34(1)
Yi(t) = R, Sindy(r)

Zi(1) = Z{ (D).
6.2. Contact Constraints As summarized in Table 18, and R, represent the peg and
hole radius, and; ands; are the time-dependent angular co-
In the spatial peg-in-hole insertion described in Figure 1, folgrdinates locating the contact point on the rim of the peg and
primary contacts can be defined as depicted in Figure 5. § the rim of the hole, respectively.
contact 2, for example, the contact point belongs to the bottom step 3. Only three geometric constraints were provided for
rim of the peg and to a plane in the environment frame.  each contact state in step 2. Thus, at least one anticipated path
Additional surface, line, and combined one-point contacigonstraint is needed for each contact state. These constraints
can occur; however, parametrizations of the primary contacige based on paths the operator is likely to employ during
can be selected to include all of the desired geometric propgfie assembly task. While not unique, those described below
ties. Formulation of constraint equations for the primary corhave been found to be well suited to the task. Note that the
tacts proceeds using the five steps developed in Section 3.#inimum number of anticipated path constraint is added for
Step 1. Frames are assigned to the peg and hole respegmtact 2, while two anticipated path constraints are added for
tively, such that their location and orientation correspond witBgntacts 3 and 4.
the center and axis orientation of both objects. Contact 2. The peg slides on the plane without rolling.
Step 2. Using eq. (1), we can describe the position basethys, the contact point on the peg is fixed. As a consequence,
constraint equations associated with each contact state3¢) becomes time-independent in eq. (13).
follows. Contact 3. The peg slides, without rotating about its axis,
across a fixed point on the rim of the hole. Thus, the con-
tact point is fixed on the hole’s rim, while it describes a line

Contact 2 on the side of the peg, introducing two more constraints. As
X"(1) = R, cOSa,(7) 2qcczr112<;quenca3(t) andé;(r) become time-independent in
Y"(t) = R, Sinay(t) Contact 4. The peg slides without rolling along the cylindri-

cal interior of the hole, parallel to the hole’s axis. The contact
Z!n=0 (13) point is fixed on the peg and describes a line on the interior
X(t) = X°(t) surface of the hole, introducing two constraint equations. As
¢ ¢ a consequencey,(r) ands,(r) become time-independent in
YE(r) = Y1) eq. (15).
2 =0 Step 4. To define the residual vector (3), the following

assumptions are made.
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i

Contact 1 Contact 2 Contact 3 Contact 4
Fig. 5. Primary one-point contacts for peg-in-hole insertion.

1. The position of the gripper in the base frame is known Step 5. Equation (16) is made time-independent of the re-
(T#(t) is known). maining time-varying coordinates using a two-step process.
o . o First, a change of coordinates is used to isolate the time-

2. The peg does not slip in the grippef;(is time- yarying unknowns. Then, the components of the resulting
independent). vectors are projected onto a vector orthogonal to these time-

. S . varying coordinates, yielding the projected magnitagle
3. The shape of the manipulated object is known (cylin Contact 2. X*(1) and Y*(¢) are the only time-dependent

drical peg). unknowns remaining in eq. (16). As a consequence, eq. (16)

The grasping configuration of the peg is known. is transformed to the body frame of the environment object.
Then, the resulting vector is projected along the contact nor-

Objects are assumed to be rigid. mal, which is parallel to the-axis of the frame associated

_ S with the hole, yielding the scalat,,.
The hole stays fixed'{ is time-independent).

R A

The orientation of the hole’s axis, while unknown, is
orthogonal to the surface in which it is drilled. Epa = Eo:

. &o. = K + q14SiNBa + 24 COSP2 SINPBy — ¢34 COSPy COS
Under these assumptions, eq. (3) can be reduced to the 2 14512 7 424 COSPa SINBL — 424 COSPs OB

following set of equations: +L,[ 433 C0SP1 COSP2 + 423 SINP1 COSP, + 413 SIN B
+R, COS2[—q31 COSP1 COSP, + g2 SINPy COSP,
(1) ’ qi1 912 913 qia 100 O —q11SinBs]
&M | _ |91 422 G qu| |0 1 0 O R, Sinas[—g3, COSB1 COSB, + g2 SiN By COSP,
&.(1) a1 93 93 qu| |0 O 1 L, I
0 o 0 0 1]lo 0 0 1 125N B
- whereK, = H, cosf; cosB, — H, sinB,
[ X.(0)]" cosp; 0 sing; H, —H, COSp, Sin f;.
Y1) | | sinp sin_ B cpsﬂl —sing,cosp, H, (17)
Z.(1) —cosBising, sinB, cospicosB, H.
|1 0 0 0 1
X0 The bolded variables in this equation, and those that fol-
Y. (1) low, are the identifiable unknown parameters. Note that the
Z.n) | - (16)  terms formingkK, are not individually identifiable since they
1 do not multiply any input. In this case, they depend on the

hole’s center coordinates, which clearly cannot be identified
As shown in Table 18, andg, describe the orientation of in contact 2.
the planeL, is the length of the peg, and,, H,, H. describe Contact 3. Z" (t) is the only time-dependent unknown re-
the hole’s center coordinateg; are known functions of the mainingin eq. (16). As a consequence, eqg. (16) is transformed
robot’s kinematic parameters and joint angles. The vectors the body frame of the manipulated object. Then, the re-
[X7(@), Y (1), Z()]" and [X:(t), Y2 (1), Z:(¢)]" represent sulting vector is projected on the plane orthogonaktuy),
the substituted constraints from steps 2 and 3. yielding the projected magnitudes.
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As shown in Figure 6(a), a state network can be used to
model this sequence of contact stafgs— C,. Connections

Ep3 = \JEh, T €0, between states are labeled with their state transition proba-
Emx = q11K2 + 21K + g21Ka. — R, COSat3 bilities a;; as defined in eq. (10). Note thét, labeled “no
—q1G1s — G21G24 — G31G34 contact”, represents not only no contact, but also all other

possible contacts besidé€s — C,. As a second example, an

Emy = q12Kza + q20Ka, + g3.K3. — R, Sina - = )
v T 12l T gl T g ta ? 3 alternative two-state network appears in Figure 6(b). Itis com-

T912q1a — 922924 — 932934 (18) prised of contact stat€, and contact staté€), representing
K3, = H, + R, C0S3; COSp, all other possible contact states.
K3 = H, + R, Cc0S83Sin B, sin B,
whereq +R,, siné; cosp; 6.4. Residual Conditioning

Ks. = H, — R, C0S83C0SpB; SinB,

. . To investigate input excitation and residual conditioning, the
+R;, SInd3 SIn ;.

residuals for experimental data corresponding to the expected
state sequenc€, — C, are plotted in Figure 7(a). While not
gspicted, the magnitude of the condition numbers corresponds
ith that of the residual value§;, experiences a small residual
hen active and possesses the lowest condition number. In
contrast, the residual faf; is large and poorly conditioned
regardless of whether or not the contact state is active. The
€5 = m reason f(_)r thi§ is t.hafz experiences greater input exci_tation
’ . . . thanC; since its pitch and yaw angles are not constrained by
€or = Kag + q14COSPa + 24 SINP1 SINBo — ¢34, COSPs SINP, the hole.
+L,[q13€0SB2 + q23SINP1 SiNB2 — ¢33 COSPy SINBy] This is a case when the propagation of parameter estimates
+R, COSas[q11 COSP2 + ¢21SiNB, SINB2 — ¢31 COSPy SiNB,]  canimprove the conditioning and estimation of a contact state.
+R,, SiNa4[q1, COSP, + g2, SINPy SINB, — g3, COSPy SINBy] Figure 7(b) depicts the case when the parameter estimates

- from the easily estimate@;, (i.e., 81, 8., R, andL ) are sub-
&0y = Kap + G24COSBy + g34SinBy + L cos ; . . 2 1P P25 Bp p)
’ 4 + G24C0SP1 + g3 SINfy r1423COSPy stituted into the residual equations 6f and C,. While the

Contact 4. Z:(¢) is the only time-dependent unknown re-
maining in eq. (16). As a consequence, eqg. (16) is transform
to the body frame of the environment object. The resultin
vector is projected on the plane orthogonaktat), yielding
the projected magnitude,,.

+s3Sinpy] . . residual ofC, is largely unaffected, the residual 6% de-

+R, COSw4[q>1 COSP1 + g31SINB1] + R, Sinas[g2, COSPy creases substantially allowing contact state 3 to be easily esti-

+q32Sinps] mated. IfC, always occurred befor€; then the contact states
K4, = H, cosp, sinp, — H, cosp, and their parameters could be estimated online in asingle pass.

where!{ —H, sing,sing, — R, coss, To allow for arbitrary ordering of states, however, a multi-

pass approach, as described in Section 4.2, is employed. In
the first pass, the state network of Figure 6(b) is used to esti-
(19)  mate contact stat€,. Then, in a second pass, the four- state

Equations (17)—(19) allow the estimationg s, R, L, network of Figure 6(a) is employed and parameter estimates

andK,. The remaining parameters of Table 1 can be estimatggm C, are used to re-estimate the residuals for contact states

indirectly by solving the algebraic equations provided by th ceurring both befqre and aftél,. A description of the two
identified K. MMs corresponding to the two state networks follows.

K4, = —H, cosp; — H, sinB; — R, siné,.

6.5. Contact State Estimation by HMM

The multiple model estimation approachillustrated in Figure 2
The primary contacts of Figure 5 can be combined and orderesdused to estimate the contact state sequence. Orientation and
according to the expected sequence during the insertion tapksition of the robot’s tip are recorded at a rate of 25 Hz,
The resulting sequence of three contact states is shown in Fagd contact state residuals (17)—(19) are computed at each
1. First, the peg is slid towards the hole on the planar surfatiene step using a 20-point moving data window. The residuals
(contact 2). As the peg enters the hole, it pivots on the rim a@bnstitute the observation signal used as inputs to the HMMs.
the hole (contact 3) and typically maintains this contact untifhe two-state fully connected model of Figure 6(b) is first
the other side of the hole is reached. It then remains in douhlélized to estimate contact state 2 and its parameters. Then,
contact with the rim and the inside of the hole (contacts the four-state, fully connected model of Figure 6(a) is used,
and 4) until the peg is inserted far enough that the task can tmgether with the parameter estimates fréi to estimate
easily completed. While not unique, this sequence is sufficietite remaining states and parameters. The design details of the
to estimate the properties listed in Table 1. four-state HMM are described below.

6.3. State Network Modeling
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g e,
|_M 7 r: J
R =,

Fig. 6. Contact state networks: (a) four-state network based on the contact states of Figure 1; (b) two-state network for
distinguishing contact state from all other possible contact states.
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Fig. 7. Multi-pass estimation: (a) initial estimation residuals; (b) estimation residuals computed using parameter estimates
propagated fron,.

To obtain values for the initial probability vectgr, the are the residuals associated with the contact states. When a
probability transition matrixA, and the probability density contact state is active, the associated residual is expected to
function B, training techniques such as the Baum-Welch abe the smallest, given that the contact equations are well con-
gorithm can be used (Baum and Petrie 1966). Such techniquiiSoned. This pattern, illustrated in Figure 7(b), is encoded
are well suited for applications with large numbers of states) m as shown in eq. (20). The rows represent the mean of
e.g., speech recognition. Here, the task is comprised of a matte residualg,, — ¢,4, while the columns correspond to the
imum of only four states and so the HMM parameters can mate<”; — C,. For exampley 3 = 2 implies that the expected
assigned manually. mean ofe ,, is 2 when contacf’; is active. The values shown

The Gaussian probability density functiddescribes the were determined empirically using a two-step process. First,
relationship between the observation signal and the contaaveral contact sequences were manually segmented, and the
states. For each state, this relationship is defined by a meamndU values corresponding to each state of the HMM were
vectorm and a covariance matriX. The observation signals extracted. Then, final values were obtained by averaging these
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experimental values. A similar technique was applied to deteFhese transition matrices are used to define two models,
mine the values of the covariance mattix Note that, since HMM,, and HMM,,, respectively. Employing two-pass es-
C, is composed of contacts 3 and 4, it is expected that botimation, a two-state modekIMM; first estimates contact

&,3 ande 4 are low when the state is active: state 2 and provides estimates of its parameters. In a second
pass,HMM,, andHMM,, estimate their four contact states

10 05 2 2 using residuals computed with the parameters estimated dur-

m=90 40 1 1]. (20)  ing the first pass. For comparison, manual segmentation was

80 90 5 1 performed by the operator who pressed a switch at each per-

. . . . __ ceived state transition.
_ Todefine4, the probability transition matrix, and the ini- Figure 8 depicts the results for the most likely sequence of
tial probability vector, the following task knowledge is usedqgntact states in peg insertiofCy, Cy, Cs, Cs, Cy1}. In con-
trast, Figure 9 shows the results for a state sequence including

* StateC (no contact) occurs firspy, > p;, j =2,3,4. o500 unexpected transitiofi,, Cs, C,, Cs, C4, C1}. Inboth

« State transitions are shout; > a;,,1 < i, j < 4. figures, the two-st@tde{MMl demonstr_ates agreement with
manual segmentation. For the most likely sequence of states
 Transitions betweed, and C, are impossiblea,, = in Figure 8, the additional transition flexibility 6fMM,, pro-
ap=0 duces two short time segments in which the state is falsely

identified. None the less, both models successfully match
For the two-state model of Figure 6(b), the selection of theanual segmentation for all contact states.
probability transition matrix is straightforward. The values For the unexpected sequence of contact states in Figure 9,
were chosen such that the probability of remaining in thhe rigid state transition matrix diMM,, introduces many
current state is much higher than the probability of leavinfalse transitions to satisfy the state transition matrix. For ex-

the state: ample, the first actual state change is framto C;. The
rigid model must pass througdty in order to make this transi-
A [83? 88;] ‘ (21) tion. The next actual state change is framto C». The rigid
) model can only make this transition by the three state changes,

Because there are only two states, this model does not encgde_) Cs — €1 — C,. Theflexible state transition matrix of

any information about the likely sequence of contact state'g.MMZf avoids all of these false transitions and successfully

In contrast, the four-state model of Figure 6(a) does pem{'ﬂentifies large portions of the active states. It was found that
the inclusion of such information, and the selection ofAts this model was successful for a variety of state sequences. In

impacts what contact state sequences can be successfullyﬁg't'tort]’ ?tate _?_stlmatlto_n was rggus%t]o var|at|0|rt13 '?1 thetgei(-
timated. This topic is explored in the following subsection. ble state transition matrix, €q. (22). These results show that a
flexible state transition matrix can successfully accommodate

o S a broad range of robot paths during task execution.
6.6. Sensitivity of Contact State Estimation to Robot Path

While the state transition probability matrix encodes the prof§ 7- Parameter Estimation
ability of each contact state transition, the particular robot patlvhile initial parameter estimates are obtained using moving
employed in task execution may or may not correspond to tliata windows during state estimation, final parameter esti-
most likely sequence of transitions described AyTo be mates are calculated by time averaging the estimates associ-
robust to variations in robot path, the matdxmust accom- ated with every detected time segment of contact si@ies
modate variations in contact state sequence. Such a matii, and C,. Falsely identified time segments can be identi-
A, (f = flexible transition matrix), which was obtained em-fied using statistical tests and discarded prior to averaging.
pirically, is compared here with one which permits only thé\s shown in Table 2, parameter estimates for a typical trial
most likely state transitions}, (» = rigid transition matrix). were found to be within 5% of the measured properties. Note
that a relatively large ratio of peg-to-hole diameters (0.98)
a7 01 1 was employed to facilitate manual segmentation during algo-
A |7 150 (22) ithm development. Automatic segmentation of smaller ratios
! 11 71 has also been performed successfully. For these cases, a triple
.15 0 .15 7 contact state, illustrated in Figure 10, was also estimated.

L_|0 99 01 o0 23) 7. Conclusions
' : ' In this paper, a perceptual system based on contact state esti-
L : mation was presented. The approach employs multiple model




Debus, Dupont, and Howe / Contact State Estimation

Table 2. Comparison of Estimated and Directly M easured Parameter Values

Properties Direct Measurement Estimated Value
R, (peg radius) 12.5% 0.5 mm 11.8+ 1 mm
L, (peg length) 62. 4 0.5mm 62.1+ 1 mm
H, (hole centerz) —-91.0+ 0.5 mm —90.8t 1 mm
H, (hole centery) 21.04+ 0.5 mm 20.6+ 1 mm
H, (hole centery) —55.0+ 0.5 mm —54.8- 1 mm
B1 (hole pitch) 18.0+ 0.5 deg 18.5 1 deg
B> (hole yaw) 20.0+ 0.5 deg 19.2+ 1 deg
10
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Fig. 8. State estimation of the most likely insertion stat€ig. 9. Segmentation of an atypical state sequence.

sequence.
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