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ABSTRACT

Controlling hand exoskeletons for assisting impaired pa-
tients in grasping tasks is challenging because it is difficult to
infer user intent. We hypothesize that majority of daily grasp-
ing tasks fall into a small set of categories or modes which can
be inferred through real-time analysis of environmental geom-
etry from 3D point clouds. This paper presents a low-cost, real-
time system for semantic image labeling of household scenes
with the objective to inform and assist activities of daily living.
The system consists of a miniature depth camera, an inertial
measurement unit and a microprocessor. It is able to achieve
85% or higher accuracy at classification of predefined modes
while processing complex 3D scenes at over 30 frames per
second. Within each mode it can detect and localize graspable
objects. Grasping points can be correctly estimated on average
within 1 cm for simple object geometries. The system has
potential applications in robotic-assisted rehabilitation as well
as manual task assistance.

I. INTRODUCTION

Rehabilitation robotics offers the possibility of augment-
ing standard therapy programs by supporting, assisting, and
structuring movements in task-specific ways, such as passive
assistance by relieving the weight of the arm during reaching
tasks [1, 2] or by actively providing assistance of hand and
finger function [3, 4, 5, 6]. Recently there has been a growing
interest in using exoskeletons to help with activities of daily
living (ADLs) [7, 8, 9, 10]. These devices use wearable actu-
ators to apply force to fingers to help with grasping. A main
issue is that impaired users have trouble controlling fingers,
so conventional control modes, such as using EMG sensing of
muscle activation of the muscles in the forearm [11], may be
inadequate to control actuators to produce correct grasping be-
havior. Similarly, controlling grasping behavior in autonomous
robots in unstructured environments is challenging because of
the complexity of the cluttered setting and the variability of
target objects. [12, 13].

A promising approach to augmenting exoskeleton control is
the use of vision-based methods. In particular, depth cameras
have become ubiquitous in robotic sensing and have many
advantages over RGB vision for acquiring 3D geometry. There
has been an influx of work related to indoor environment scene

segmentation, scene modeling, semantic labeling and support
inference from RGB-D cameras [14, 15, 16, 17, 18], or from
3D point cloud maps alone [19, 20, 13, 21].

We propose the use of wrist-mounted video-plus-depth
cameras and inertial measurement units (IMUs) to characterize
the surrounding environment, and thus determine both key
object properties and the anticipated task category. In this
scenario, the arm moves the hand towards the target object,
while the camera acquires point clouds of the approaching
object. If processing algorithms determine that the surrounding
environment is largely a horizontal plane (e.g. table top) for
example, this indicates that the likely goal is grasping and
lifting the object. If the object is protruding from vertical
surface, it is likely a door knob or handle, and should be
grasped to permit turning and pulling or pushing. Similar
combinations of environmental configurations can be used
to infer control modes for keypad button pushing, crowded
shelves, and other common contexts seen in ADLs.

The goal of this paper is to explore scene context analysis,
including control mode detection, for the purpose of inferring
user intent and assisting with grasping. We demonstrate our
concept with an initial system prototype. We begin by de-
scribing the system design, followed by algorithms on scene
parsing and mode detection. We then present our preliminary
results and conclude with discussion and future work.

II. MATERIALS AND METHODS

A. Overall System Design

Our system, as shown in Figure 1, consists of a miniature 3D
depth camera for sensing environmental geometry, an IMU for
detecting hand and camera orientation, and a microprocessor
to enable communication between the IMU and the computer.
The system is designed to sense and classify contextual prop-
erties of a scene in order to inform desired hand function. We
developed algorithms to accurately and reliably classify daily
household scenes at real-time frame rate (≥30 fps), and then
use the semantic labels to guide further scene parsing in order
to detect objects and identify potential grasp heuristics. The
capabilities can be used in task assistance through integrating
with a wearable rehabilitation system or with other robotic
systems to provide scene context classifications and grasping
point estimations.
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Fig. 1. Real-time 3D object sensing. (Left) 3D depth+video camera and IMU; (Middle) Exoskeletal glove mounted with a depth camera and IMU looking at
the target object; (Right) Processed depth image: red pixels = table top, blue = object; white = bounding box of object from segmented object and PCA; pink
dots = target grasp points determined as opposition points on minor axis parallel to table.

B. Sensors

To sense the environment, the system uses a wrist-mounted
depth camera to capture 3D scenes. The CamBoard Nano
(pmdtechnologies.com, Siegen, Germany) proved ideal for this
purpose, as it is a small, low-cost depth camera which outputs
accurate depth readings between 5 and 100 cm. The Nano
provides better resolution, closer range, faster frame rate,
and smaller footprint than the Microsoft Kinect (Microsoft
Corporation, Redmond, WA, USA), the de facto standard
depth camera for 3D scene analysis. The vast majority of
relevant environmental features fall within the 5 to 100 cm
range as the hand reaches for an object.

In order to distinguish horizontal planes from vertical planes
and to conduct basic odometry of the camera’s motion, we
attached a 6-axis IMU (MPU-6050, InvenSense, San Jose,
CA, USA) to the back of the camera. It consists of a three-
axis gyroscope and a three-axis accelerometer, and is widely
used for orientation sensing in robotic applications. Figure 2
describes the key system modules and the data flow and
communication.

C. Mode Detection and Algorithms

Selecting a proper set of detectable grasp contexts is a
critical design choice. In this initial prototype, we have focused
on a few modes which are highly important to daily life
activities. Modes which we have so far implemented include
a “tabletop” object mode, which detects objects resting on
horizontal planes, a “doorknob” mode, which detects unsup-
ported objects extruding from vertical planes, and “pot handle”
mode, which detects elongated objects not directly supported
by planes. Despite their specific titles, this small suite of modes
is sufficient and applicable to a surprisingly large variety of
household grasping tasks.

Since we are working with three-dimensional scenes, com-
putational efficiency is also a concern. We chose to use the
open-source Point Cloud Library (PCL) [22, 23] and the point
cloud format for representing 3D images. The point cloud
format, which represents a 3D image as an array of points

Fig. 2. System modules and data flow.

rather than as a two-dimensional array of z-coordinates, is
the natural choice for three-dimensional operations such as
nearest neighbor detection, surface normal estimation, and
three-dimensional surface and shape detection. In addition, the
PCL provides a standard, optimized suite of state-of-the-art
functions and algorithms for point cloud manipulation.

The algorithms developed here are geared towards real-
time analysis of environment geometry in order to identify
the context of the grasping task. As shown in Figure 3,
depth images are captured from the CamBoard Nano at a
framerate of 60 Hz and converted from range images into point
cloud format. Initial preprocessing steps remove pixels flagged
by the camera as inaccurate, saturated, or inconsistent, and
convert each valid pixel to a 3D point, and then store all of the
points in a single point cloud. After this, we perform context
extraction. By using random sample consensus (RANSAC),
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we detect the most prominent plane in the point cloud, as
measured by the number of points in the cloud. RANSAC
proved robust at detecting planes even when the depth image
was cluttered or the planes were obscured by other objects. It
proved to be more effective than Hough transforms for identi-
fying planes with a large number of possible orientations [24].
Next, accelerometer data is used to determine the orientation
of the plane; the camera and accelerometer share a fixed
known rigid transform, allowing estimation of the camera’s
orientation with respect to world coordinates. Two special
cases are horizontal and vertical planes. Here we assume that
a highly prominent horizontal plane implies a tabletop scene
and a highly prominent vertical plane infers a doorknob scene,
or possibly a remote control keypad or microwave button
keypad scene. If the ratio between the number of RANSAC
plane outliers and inliers in a scene is below a predefined
threshold, then there exists a prominent plane. This also serve
as a confidence metric when comparing scenes with multiple
possible modes.

If no prominent plane exists in the scene, we search for
another possible mode - pot handle mode. The criteria for this
involves a prominent cluster of points with a small minor axis,
above a plane but not directly supported by it.

Fig. 3. Algorithm flowchart describing 3D scene parsing and mode detection

D. Scene Analysis

Once the mode is identified, we can then further parse the
relevant scene based on the mode to extract key information.
This both minimizes superfluous computation and targets
grasp heuristic analysis and object segmentation techniques.

For instance, it is useful to estimate desirable grasp locations
on a target object, i.e. points where fingers can be placed to
grasp and lift the object. These locations can be used by an
exoskeleton assist glove controller to determine when to help
close the user’s fingers.

Our prototype system used a simple heuristic that desirable
grasp points are often located at the center of the sides of an
object sitting on a table. If the system identifies a prominent
horizontal plane in the scene, we proceed by identifying the
convex hull of the plane and extruding it along the surface
normal in order to identify the volume which could potentially
contain graspable tabletop objects. Then, we segment point
clusters inside the convex hull in order to identify distinct
objects. From there, we use principal components analysis
(PCA) to identify the principal axes of the object, estimate
a bounding box for the object, and find a minor axis and
opposing grasping points along that axis. The grasping points
are calculated by finding the nearest point to the minor axis
on the object’s surfaces perpendicular to the planar surface the
object extrudes from. A similar procedure is used to identify
objects extruding from vertical surfaces, such as doorknobs.

In the case of pot handle mode, we look for point clusters
greater than a certain height (e.g. 5 cm) above a plane. In the
case of the keypad mode detection, if the system identifies an
array of keypad buttons as the salient environmental feature,
we will use standard 2D computer vision techniques such as a
Haar Cascade or HOG features in combination with a Support
Vector Machine, for example, to locate buttons.

The key insight here is that identification of the proper
environmental context determines the subsequent steps for
object identification and grasping point estimation. As a result
detailed analysis is only focused on the relevant parts of the
scene. This greatly reduces computation time.

III. EXPERIMENTS AND RESULTS

The goal of this study is to demonstrate the feasibility of the
approach and explore implementation methods. To this end, we
conducted experiments to measure the performance in terms
of both mode classification and grasp point identification.

A. Mode Classification

To test mode classification, we performed bench top exper-
iments in various scenes, including a crowded kitchen scene
and a computer desk scene. The scenes included doorknobs,
planar surfaces with multiple orientations, and numerous table-
top objects. Performance was measured by comparing the
mode output by the system to the correct mode as identified
in the previous sections. Video was recorded from various
views, positions, camera orientations, and with different object
placements.

Figure 4 is an example of a horizontal plane or tabletop
scene. An RGB image of the tabletop scene is shown on the
top, and the processed point cloud image of the same scene is
shown at the bottom. The dark red points represent the detected
prominent horizontal plane in the scene, and the blue points
represent the identified tabletop objects. The bounding box
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of each object is outlined in white lines, and the estimated
grasping points are identified as the light red points on the
bounding box.

Figure 5 is an example of a vertical plane scene of a door
and its handle. To the left is the RGB image of the scene, and
to the right is the processed point cloud of the same scene.
The dark red points are those identified by the algorithm as
part of the vertical plane, and the bounding box is drawn in
white lines with estimated grasping points shown in light red.

Similarly, Figure 6 shows a pot handle scene which includes
an RGB image of the pot and the corresponding processed
point cloud image with the estimated pot handle bounding
box and grasping point.

Fig. 4. Example tabletop scene. (Top) RGB image of a tabletop scene;
(Bottom) Processed 3D point cloud with grasping points identified. The
bounding box for each of the detected object is displayed in white outlines.

Fig. 5. Example doorknob scene. (Left) RGB image of a doorknob scene;
(Right) Processed 3D point cloud with object bounding box and grasping
point identified.

Fig. 6. Example pot handle scene. (Top) RGB image of a pot handle scene;
(Bottom) Processed 3D point cloud with object bounding box and grasping
points identified.

We conducted a number of five minute real-time experi-
ments in different household scenes as described above. Our
system was able to correctly detect prominent planes, even
when as much as 80% of the visible table surface was occluded
by tabletop objects. In terms of scene classification, in the
crowded kitchen scene and computer desk scene, tabletop and
doorknob mode were detected correctly 100% of the time. Pot
handle mode was detected correctly 85% of the time.

B. Grasping Point Accuracy

To evaluate the performance of the model in estimating
grasping points, we tested it on numerous household objects
encountered in ordinary activities of daily living. Although a
simple grasping heuristic was used (opposing points centered
along the minor axis), the system proved to perform well at
estimating grasping points on a variety of objects as shown in
the scenes above.

To give a measure of accuracy of the grasping point
detection method, we compared the distance of each pair of
estimated grasping points to the actual distance measurement
of the two opposing centers of a rectangular object (a white
board eraser) along its minor axis using a caliper (0.25 mm
accuracy). We calculated the accuracy at different hand-object
distances in order to simulate a hand approaching an object
for grasping. We looked at the operable range of the depth
camera in which the whole object was visible.

Figure 7 is a plot of the grasping point detection accuracy.
As the camera approaches the object from the top, the system
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Fig. 7. Accuracy of estimated grasping points at different distances where
the object was visible.

is able to correctly localize opposing grasping points to within
5-6 mm of their actual positions. Error decreases approxi-
mately linearly with distance, and the majority of the error in
grasping point detection comes from the z-axis error, due to
the depth camera’s top-down perspective as it approaches the
object. The grasp point location estimates depend on sensing
both the upper surface of the object and the table top height;
the actual vertical width of the object is sometimes occluded
by the points on the upper surface of the eraser.

C. Noise Measurements

We also evaluated the performance and limitations of our
chosen hardware, notably, the depth camera. The CamBoard
Nano, while providing effective depth images, is not specified
to work well on reflective surfaces due to low intensity of
the returned infrared signal. Highly reflective objects therefore
post a challenge to our system. Similarly, even when looking
at a perfectly planar surface, the depth camera shows wavelike
noise patterns with standard deviation of 5-8 mm (Figure 8),
as expected for time-of-flight depth sensing cameras. This
prevents the object detection algorithms from correctly dis-
tinguishing small (≤1 cm) objects resting on planar surfaces.
Fortunately, because the noise can be well-modeled as Gaus-
sian, simple statistical signal processing techniques combined
with spatial coherence estimates can be used to detect small
objects.

The noise also varies based on the depth camera’s distance
from a plane, as shown in Figure 9. The noise appears to be
approximately Gaussian in the 30-80 cm range, enabling use
of the above- mentioned signal processing methods.

Other measurements further establish the performance and
limitations of our system. Through experiments, we found that
our system can work robustly even with 80% of a planar
surface occluded by clutter. In addition, we found that two
planes, one supporting the other (e.g. a stack of books), are
distinguished from each other when the upper plane has a

Fig. 8. Histogram of planar noise in the CamBoard Nano depth camera
overlayed with best-fit Gaussian PDF

Fig. 9. Standard deviation of planar noise at different ranges showing that
the CamBoard Nano has predictable noise behavior between 30-80 cm.

height greater than 1.9 cm above the lower plane. These
measurements will help fine-tune the RANSAC threshold
parameters and further improve system performance.

IV. DISCUSSION

In this paper, we presented an initial prototype system
for grasping task context detection, using a miniature depth
camera and an IMU mounted at the user’s wrist. The results
show that such a system can provide low-cost, real-time
classification of scenes into informative categories, which
can be used to aid users in controlling a grasping-assistance
exoskeleton. For example, when the user moves their hand
towards an object resting on a flat horizontal surface, the
system can infer that the goal is to grasp the object, and trigger
the fingers to close when the hand is poised above the object,
with the target grasp locations near the fingers. Many tasks of
daily living, for example, picking up a coffee cup or pushing
a button on a microwave keypad fall within the three modes
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implemented here. Overall, such a system has great potential
in task assistance and rehabilitation.

A. Extensions

The system is easily extensible to include a larger library
of semantic labels, because environmental geometry is often
effective in identifying these categories. In addition, the system
naturally produces large, high-resolution close-up point clus-
ters because the user moves their hand towards the objects
they wish to interact with. By focusing computation and
analysis on these features, we minimize the computation cost.
For example, as a hand moves toward an object continually,
as detected by the combination of the IMU and the depth
camera, we can focus scene processing on that particular
object, because the user likely intends to grasp it - or at
least, the user cannot grasp an object that the hand is not
approaching. As a result, not only does our scene processing
inform the grasping task, the grasping task also informs our
scene processing. Scene prominence and object size are useful
proxies for user intent.

This system is particularly appropriate for stroke survivors
with hand impairments. These individuals often have good
residual control of shoulder and elbow joints, but poor control
of the fingers. Traditional methods of exoskeleton control like
surface EMG signals are problematic for the hand, due to the
large number of overlapping muscles in the forearm. Because
it uses environmental cues, our depth camera based system
can minimize the need for detailed control inputs from the
user. However, effective use in real-world rehabilitation and
assistance applications will doubtless require tight integration
of the proposed system with a number of sensing and control
methods.

B. Future Work

The depth camera’s noise is a factor in the performance
of our system, as the planar noise level is directly related to
the RANSAC planar segmentation threshold that we set. For
instance, if the depth camera is noisier, the plane detection al-
gorithm must be more lenient (larger threshold value), making
it more difficult to distinguish planar noise from objects with
small height resting on the planar surface. In our next phase
of development, we will apply appropriate filtering techniques
based on the statistical measures of system performance to
improve planar identification and object differentiation.

One untapped performance enhancement is the use of
frame-to-frame registration and sensor histories. Capturing
multiple views of the scene would both increase the robustness
of the segmentation algorithms as well as provide increased
grasping point detection accuracy due to the more accurate
object models created by registration. Existing registration
libraries could be leveraged to add frame-to-frame scene
construction. Similarly, existing libraries for simultaneous lo-
calization and mapping (SLAM) would allow for better object
model construction and thus better decision making [25].
However, real-time SLAM is challenging in the context of
grasping, as scenes change at a rate much more quickly than

in the navigation contexts which are the basis for the bulk of
existing SLAM research. In the future, we will investigate the
integration of SLAM with the depth camera for more robust
scene registration and model construction, while still preserv-
ing real-time performance, which is critical for applications in
task assistance.

Further work is required to determine the limits of per-
formance of the approach. One key question will be the
degree to which the detected contexts always correspond to
specific task intents. Users will be frustrated if, for example,
the exoskeleton system incorrectly attempts to grasp a remote
control when the intent was to push a button or vice versa, but
even a small level of user input may be sufficient to correct
these issues. It is also unclear how well the system can identify
the appropriate grasp configuration for a given object; while
object size is very often a good heuristic (pinch grasps for
small objects, wrap grasp for large, etc.), grasp choice also
depends on the intended task as well as the object. The next
step in this project is to connect the depth camera system to a
glove exoskeleton [9] to enable exploration of the behavior of
the system in real-world settings, so such questions can begin
to be addressed.

We will also work to expand the suite of environmental
contexts to give the system the ability to handle a large
variety of daily household tasks. Example of future modes to
be developed include a clothing mode, which detects highly
irregular folded surfaces, either hanging vertically or resting
horizontally, and a shelf mode - an unsupported horizontal
edge, indicating a horizontal surface, but with too much clutter
on it to detect a plane.
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